Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (4): 177-182.DOI: 10.11988/ckyyb.20240214

• Hydraulic Structure and Material • Previous Articles     Next Articles

Influence of Steel Fiber Characteristic Parameters and Forming Methods on Tensile Performance of Ultra-high Performance Concrete

DENG Zong-cai1(), WANG Meng-xin1, WANG Hong-jun2, CHEN Xiang-yu2   

  1. 1 Key Laboratory of Urban and Engineering Safety and Disaster Reduction of Ministry of Education,Beijing;University of Technology, Beijing 100124,China
    2 Zhitai Technology New Materials (Jiangsu) Co., Ltd.,Suzhou 215000,China
  • Received:2024-03-06 Revised:2024-05-07 Published:2025-04-01 Online:2025-04-01

Abstract:

To explore the mechanical properties of ultra-high performance concrete (UHPC) with different steel fibers under uniaxial tension, we designed ten sets of uniaxial tensile tests on dog-bone-shaped UHPC specimens. We investigated how the aspect ratio (37, 50, 64, 65), dosage (2%, 3%, 4%), shape (end-hooked and curved), and forming methods(mixing and slurry) of steel fibers affect the tensile strength, stress-strain curves, tensile toughness, and failure process of UHPC. Results reveal that as the aspect ratio of hooked steel fiber rises, the tensile strength of UHPC increases by 6.54%-9.37%, and the residual strength ratio in the strain-softening segment grows by 5.00%-38.30%. When the volumetric dosage of end-hooked steel fiber increases from 2% to 3% and 4%, the tensile strength, peak strain, and residual strength ratio in the strain-softening segment of UHPC increase, along with an enhancement in tensile toughness. Compared with specimens formed by the mixing method, those formed by the slurry method with end-hooked steel fibers show no significant change in strength, but the peak strain increases by 53.61%-91.96%. The stress-strain curve of UHPC with curved steel fibers demonstrates strain-hardening characteristics, and its failure process involves the propagation of multiple cracks. In comparison to specimens with end-hooked steel fibers of the same aspect ratio, UHPC with curved steel fibers exhibits a 19.41-19.96-fold increase in peak tensile strain and an 18.00%-70.03% increase in the residual strength ratio in strain-softening segment. This indicates that the toughening effect of curved steel fibers is superior to that of end-hooked steel fibers. By using the hardening index and the residual strength ratio in the strain-softening segment, we can comprehensively evaluate the strain-hardening characteristics before peak axial-tensile strain and the axial-tensile toughness after peak in UHPC.

Key words: UHPC, tensile performance, steel fiber, characteristic parameters, forming method

CLC Number: 

Baidu
map