raybet体育在线 院报

• •    下一篇

基于MGWR模型的武汉市内涝关键影响因素分析

黄子叶1,2(), 杨青远1,2, 魏红艳1,2   

  1. 1.raybet体育在线 水力学研究所,武汉 430010
    2.流域水资源与生态环境科学湖北省重点实验室, 武汉 430010
  • 收稿日期:2024-02-21 修回日期:2024-04-26 出版日期:2024-05-23
  • 作者简介:黄子叶(1995-),女,湖北武汉人,工程师,硕士,主要从事暴雨洪涝灾害研究。E-mail:1658174923@qq.com
  • 基金资助:
    国家重点研发计划资助项目(2023YFC3209004);中央级公益性科研院所基本科研业务费专项资金资助项目(CKSF2021482SL)

Analysis of Key Influencing Factors of Wuhan Urban Waterlogging Based on Multi-scale Geographically Weighted Regression

HUANG Zi-ye1,2(), YANG Qing-yuan1,2, WEI Hong-yan1,2   

  1. 1. Hydraulics Department, Changjiang River Scientific Research Institute, Wuhan 430010, China
    2. Hubei Provincial Key Laboratory of Basin Water Resources and Ecological Environment, Wuhan 430010, China
  • Received:2024-02-21 Revised:2024-04-26 Published:2024-05-23

摘要: 城市内涝严重威胁社会安全与发展,识别城市内涝的关键影响因素是研究内涝灾害的基础。采用全局回归(OLS)、地理加权回归(GWR)和多尺度地理加权回归(MGWR)等模型,对武汉市2016年内涝程度与土地利用类型、地形、河流密度等影响因素的相关关系进行了分析与评估。结果表明:经OLS筛选后,选取用于GWR和MGWR分析的影响因素为耕地面积、草地面积和不透水面积。模型性能比较发现,MGWR模型优于GWR和OLS。MGWR结果表明,各影响因素与内涝程度的相关关系具有空间非平稳性特征,且不同因素的影响具有空间尺度差异,不透水面积影响的空间尺度最小,耕地面积影响的空间尺度较小,草地面积和常数项的影响接近全局尺度。不透水面积正向影响内涝程度,而耕地面积和草地面积负向影响内涝程度。不透水面积是影响内涝程度最主要的因素,回归系数均值为0.934,其中武昌区和洪山区中部回归系数最大。

关键词: 城市内涝, 地理加权回归分析, 影响因素, 土地利用类型

Abstract:

Urban waterlogging posed a serious threat to social security and development, and identifying the key influencing factors of urban waterlogging was the basis of studying waterlogging disasters. Global regression model (OLS), geographically weighted regression model (GWR) and multi-scale geographically weighted regression model (MGWR) were used to analyze and evaluate the correlation between waterlogging degree and land use type, topography, river density and other influencing factors in Wuhan in 2016. The results showed that after OLS screening, the influencing factors selected for GWR and MGWR analysis were cultivated land area, grassland area and impervious area. The comparison of model performance showed that MGWR was better than GWR and OLS. MGWR showed that the correlation between the influencing factors and the degree of waterlogging was spatially non-stationary, and the influence of different factors had spatial scale differences. Impervious area had the smallest spatial scale, and cultivated land area had the relatively small spatial scale. The grassland area and constant term had nearly global scale. Impermeable area positively affect the degree of waterlogging, while cultivated land area and grassland area negatively affect the degree of waterlogging. The impervious area was the most important factor affecting the degree of waterlogging, and the mean regression coefficient was 0.934. The regression coefficient of impervious area in the middle of Wuchang District and Hongshan District was the largest.

Key words: urban waterlogging, multi-scale geographically weighted regression analysis, impact factor, type of land use

中图分类号: 

Baidu
map