院报 ›› 2024, Vol. 41 ›› Issue (2): 142-150.DOI: 10.11988/ckyyb.20220933

• 岩土工程 • 上一篇    下一篇

大型水利水电工程锚固系统运行状况分析

裴书锋1,2, 郝文锋1, 樊义林2, 陈浩3, 李文涛4   

  1. 1.华北水利水电大学 地球科学与工程学院,郑州 450046;
    2.中国长江三峡集团有限公司 博士后工作站,武汉 430010;
    3.长江生态环保集团有限公司,武汉 430062;
    4.中国三峡建工(集团)有限公司,成都 610000
  • 收稿日期:2022-08-01 修回日期:2022-11-11 出版日期:2024-02-01 发布日期:2024-02-04
  • 作者简介:裴书锋(1986-),男,河南延津人,讲师,博士,从事深部工程岩体力学方面的研究工作。E-mail: peishufeng@ncwu.edu.cn
  • 基金资助:
    河南省自然科学基金项目(202300410269);华北水利水电大学高层次人才科研启动项目( 201912015);中国长江三峡集团有限公司科研项目(201903073)

Operation Condition of Anchoring System in Large-scale Water Conservancy and Hydropower Projects

PEI Shu-feng1,2, HAO Wen-feng1, FAN Yi-lin2, CHEN Hao3, LI Wen-tao4   

  1. 1. Colleague of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China;
    2. Postdoctoral Research Station, China Three Gorges Corporation, Wuhan 430010, China;
    3. Yangtze Ecology and Environment Co., Ltd ., Wuhan 430062,China;
    4. China Three Gorges Construction Engineering Corporation, Chengdu 610000,China
  • Received:2022-08-01 Revised:2022-11-11 Online:2024-02-01 Published:2024-02-04

摘要: 为了保证大型水利水电工程锚固系统长期有效运行,通过对三峡集团所属6个水电站高边坡和地下洞室锚固系统监测数据统计分析,阐明锚索荷载、锚杆应力的时程演化规律,分析影响锚索荷载、锚杆应力变化特征的因素。结果表明:①各水电站高边坡和地下洞室锚索荷载、锚杆应力多数在设计范围内,其显著变化主要发生在施工期,在开挖支护完成后逐渐趋于稳定。②边坡锚索荷载随时间呈现出显著的3阶段,首先急速下降,然后缓慢下降,最后逐渐稳定或呈周期性变化。地下洞室锚索荷载也呈现出类似特征,但其变化特征更为复杂。③锚杆应力随温度变化呈现显著的负相关关系。④地下洞室锚索荷载存在洞径效应,洞室尺寸越大,锚索荷载均值越大,荷载损失率变化幅度更为显著。⑤地下洞室群交叉洞口、块体及保留岩墩等卸荷充分部位锚杆应力较大,位于块体部位的锚索荷载损失率一般大于其他工程部位。⑥锚固于断层部位的锚索,锚索荷载损失率偏大;岩体质量越低,锚索荷载损失率越大。锚索工程建设期失效特征有钢绞线拉断、锚索击穿锚罩、钢绞线缩孔等,运营长期失效特征有锚墩头锈蚀或锚墩头有碳酸钙析出。

关键词: 水利水电工程, 锚固系统, 锚索荷载, 锚杆应力, 演化特征, 影响因素

Abstract: To ensure the effective long-term operation of anchoring systems for large-scale water conservancy and hydropower projects, we conducted statistical analysis of anchoring systems monitoring data from six hydropower stations under the Three Gorges Group and clarified the time-history evolution law of anchor cable load and anchor bolt stress as well as the factors affecting these characteristic changes. Results demonstrate that the anchor cable loads and anchor bolt stresses of high slope and underground cavern are mainly within designed ranges, with significant changes occurring primarily during the construction period, gradually stabilizing after the completion of excavation and support. Anchor cable loads on slopes exhibit three distinct stages, rapid decline, followed by slow decline, and eventual stability or periodic change. Anchor cable loads in underground caverns exhibit similar characteristics, yet with more complex variation. Bolt stress demonstrates a significant negative correlation with temperature. Anchor cable load in underground cavern exhibits a diameter effect, with cavern size in direct proportion to the average cable load value and a more significant loss rate change range. Fully unloaded areas, such as intersection portals in the underground cavern group, blocks, and retained rock piers, display the largest anchor bolt stresses, and the loss rates in block section are generally higher than those in other engineering parts. Load loss rates of fractured anchor cables are relatively high. Rock mass quality negatively correlates with anchor cable load loss rates. Failure characteristics of anchor cable projects during construction include steel strand breaks, anchor cable breakage through anchor covers, and steel strand shrinkage. Long-term failures of anchor cable operation include anchor pier head corrosion and calcium carbonate precipitation.

Key words: water resources and hydropower engineering, anchoring system, anchor cable load, bolt stress, evolutionary features, influence factors

中图分类号: 

Baidu
map