Three-node triangular elements together with the linearized yield criterion are commonly used in the finite element upper bound limit analysis. Therefore, the method is of low calculation precision. Aiming at this problem, a method of upper bound limit analysis using six-node triangular elements and second-order cone programming is developed to investigate the slope stability subjected to pore water pressure and earthquake loads. The proposed method formulates the slope stability problem as a second-order cone programming with constraints based on the yield criterion, flow rule, boundary conditions, and the energy-work balance equation. The optimization problem is solved by a state-of-the-art interior-point method, and the strict upper bound solutions can be obtained. Finally, the results of two numerical examples are compared with published solutions, which demonstrate the validity of the proposed method. The results also indicate that the mesh-dependence phenomenon is overcome and the calculation precision is improved even for large internal friction angel of materials.
Key words
slope stability /
limit analysis /
upper bound theorem /
second-order cone programming /
finite element
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] SLOAN S W, KLEEMAN P W. Upper Bound Limit Analysis Using Discontinuous Velocity Fields[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 127(1/4): 293-314.
[2] KIM J M, SALGADO R, YU H S. Limit Analysis of Soil Slopes Subjected to Pore-water Pressures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(1): 49-58.
[3] LOUKIDIS D, BANDINI P, SALGADO R. Stability of Seismically Loaded Slopes Using Limit Analysis[J]. Geotechnique, 2003, 53(5): 463-479.
[4] YU H S, SLOAN S W, KLEEMAN P W. A Quadratic Element for Upper Bound Limit Analysis[J]. Engineering Computations, 1994, 11(3): 195-212.
[5] 杨 峰,阳军生,李昌友,等. 基于六节点三角形单元和线性规划模型的上限有限元研究[J]. 岩石力学与工程学报, 2012, 31(12): 2556-2563.
[6] 孙 聪,李春光,郑 宏,等. 基于四边形网格的边坡上限有限元法[J]. 岩石力学与工程学报, 2015, 34(1): 114-120.
[7] 李 泽,王均星. 基于非线性规划的岩质边坡有限元塑性极限分析下限法研究[J]. 岩石力学与工程学报, 2007, 26(4): 747-753.
[8] 杨昕光,迟世春. 土石坝坡极限抗震能力的下限有限元法[J]. 岩土工程学报, 2013, 35(7): 1202-1209.
[9] LYAMIN A V, SLOAN S W. Upper Bound Limit Analysis Using Linear Finite Elements and Non-linear Programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(2): 181-216.
[10]LI H X, YU H S. Kinematic Limit Analysis of Frictional Materials Using Nonlinear Programming[J]. International Journal of Solids and Structures, 2005, 42(14): 4058-4076.
[11]周建烽,王均星,陈 炜,等. 线性与非线性强度的土石坝坝坡稳定分析下限法[J]. 岩土力学, 2015, 36(1): 233-239.
[12]MAKRODIMOPOULOS A, MARTIN C M. Upper Bound Limit Analysis Using Simplex Strain Elements and Second-order Cone Programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2007, 31(6): 835-865.
[13]MAKRODIMOPOULOS A, MARTIN C M. Upper Bound Limit Analysis Using Discontinuous Quadratic Displacement Fields[J]. Communications in Numerical Methods in Engineering, 2007, 24(11): 911-927.
[14]MICHALOWSKI R L. Slope Stability Analysis: A Kinematic Approach[J]. Geotechnique, 1995, 45(2): 283-293.
[15]李国英,沈珠江. 下限原理有限单元法及其在土工问题中的应用[J]. 岩土工程学报, 1997, 19(5): 86-91.