院报 ›› 2023, Vol. 40 ›› Issue (9): 162-169.DOI: 10.11988/ckyyb.20220456

• 水工结构与材料 • 上一篇    下一篇

基于交叉全局人工蜂群算法的拱坝热学参数反演分析

茆大炜1, 张傲2,3, 王峰2,3, 周宜红2,3, 谭天龙2,3   

  1. 1.中国电建集团中南勘测设计研究院有限公司 水能资源利用关键技术湖南省重点实验室,长沙 410083;
    2.三峡大学水利与环境学院,湖北 宜昌 443002;
    3.三峡大学 湖北省水电工程施工与管理重点实验室,湖北 宜昌 443002
  • 收稿日期:2022-04-28 修回日期:2022-06-13 出版日期:2023-09-01 发布日期:2023-09-01
  • 通讯作者: 王 峰(1987-),男,山东莱阳人,副教授,博士,主要从事混凝土温控研究。E-mail:wangfengctgu@ctgu.edu.cn
  • 作者简介:茆大伟(1978-),男,江苏灌云人,正高级工程师,博士,从事工程地质与岩石力学等方面的研究。E-mail:dwmao@msdi.cn
  • 基金资助:
    国家自然科学基金项目(51809154);湖北省高等学校优秀中青年科技创新团队计划项目(T2020005);水能资源利用关键技术湖南省省重点实验室开放研究基金项目(PKLHD202101)

Inverse Analysis of Arch Dam Thermal Parameters Based on Cross-Global Artificial Bee Colony Algorithm

MAO Da-wei1, ZHANG Ao2,3, WANG Feng2,3, ZHOU Yi-hong2,3, TAN Tian-long2,3   

  1. 1. Hunan Provincial Key Laboratory of Key Technology on Hydropower Development,Power China Zhongnan Engineering Corporation Limited,Changsha 410083,China;
    2. College of Hydraulic & Environmental Engineering, China Three Gorges University,Yichang 443002,China;
    3. Hubei Key Laboratory of Construction and Management in Hydropower Engineering,China Three Gorges University,Yichang 443002, China
  • Received:2022-04-28 Revised:2022-06-13 Online:2023-09-01 Published:2023-09-01

摘要: 拱坝施工期温度受到气温、冷却通水、表面保温等因素影响,热学参数实际值与室内试验测值之间存在较大误差。通过分布式光纤测温技术获取的温度数据和人工蜂群智能优化算法对混凝土热学参数进行识别,实时获取混凝土热学参数变化规律。对于在寻找函数最优值时传统的人工蜂群算法存在求解速度慢、容易陷入局部最优等问题,通过引入全局最优解,并与遗传算法中的交叉操作相结合建立了引入交叉算子的全局人工蜂群优化算法。考虑冷却水管多档通水和外界气温等因素,将改进的全局人工蜂群算法应用于白鹤滩拱坝热学参数反演,分析结果表明基于改进全局人工蜂群算法反演计算的混凝土温度与实测值吻合较好,改进全局人工蜂群算法在拱坝热学参数反演中具有较好的适应性。

关键词: 人工蜂群算法, 拱坝, 热学参数, 反演分析, 通水冷却

Abstract: Affected by factors such as ambient temperature, cooling water, and surface insulation, the actual thermal parameters of arch dam during construction differ remarkably from laboratory test results. Based on temperature data obtained by using distributed optical fiber sensor, we employed the cross-global artificial bee colony (CGABC) algorithm determine the concrete thermal parameters of Baihetan double-curvature arch dam and capture their real-time variations. To address the slow convergence and susceptibility to local optimals encountered by traditional artificial bee colony (ABC) algorithm in obtaining the optimal function value, we developed the CGABC which integrates the concept of global optimal solutions from particle swarm optimization (PSO) and the cross-operation strategy of genetic algorithm (GA). By considering the influence of multi-stage cooling water and environmental temperature, we employed CGABC for the inversion of concrete thermal parameters of Baihetan arch dam. The inversion results demonstrate a favorable agreement between CGABC-calculated values and measured temperatures. In conclusion, CGABC exhibits excellent adaptability in the thermal parameter inversion of arch dams.

Key words: artificial bee colony algorithm, arch dam, thermal parameters, inversion analysis, pipe cooling

中图分类号: 

Baidu
map