为了能够提前获知一期控温阶段混凝土短期内温度变化趋势,及时采取相应温控措施,防止温度裂缝产生,以高拱坝施工期浇筑仓混凝土为研究对象,分析初始温度、通水冷却、绝热温升、环境气温及层面散热等因素对浇筑仓混凝土温度的综合影响,建立适时动态更新初温的高拱坝混凝土一期控温阶段温度变化动态预测模型。同时,考虑不同浇筑仓混凝土的差异性,运用非线性优化法对模型的重要参数进行优化求解,并运用最大绝对误差、平均绝对误差、相对误差等评价指标检验预测模型的精度。最后结合工程实例,以2 d为步长更新初始温度并优化参数,以12 d为龄期,对浇筑仓混凝土温度进行预测,结果表明模型预测值与实测值的最大绝对误差在0.6 ℃以内,平均绝对误差在0.2 ℃以内,相对误差在0.9%以内,预测精度满足施工现场需求。
Abstract
The aim of this research is to obtain in advance the short-term temperature change trend of concrete in the first stage of temperature control, and take corresponding temperature control measures in time to prevent from temperature cracks. With high arch dam concrete in construction period as the research object, we examined the comprehensive influences of initial temperature, water cooling, adiabatic temperature rise, environmental temperature and layer heat dissipation on the concrete temperature of pouring warehouse, and then established a dynamic prediction model of temperature change in the first stage temperature control stage of high arch dam concrete by timely updating the initial temperature. Furthermore, in view of the difference of concrete in different pouring warehouses, we adopted the nonlinear optimization method to optimize the important parameters of the model, and verified the accuracy of the model using such indicators as maximum absolute error (MAE), average absolute error (AAE) and relative error (RE). With engineering practice as case study, we updated the initial temperature with 2 days as the step and optimized the model parameters, and predicted the concrete temperature of the pouring warehouse with 12 days as the age of concrete. The maximum absolute error (MAE) between predicted value and measured value is within 0.6 ℃, the average absolute error (AAE) within 0.2 ℃, and the relative error (RE) within 0.9%. The prediction accuracy of the model meets the requirements of the construction site.
关键词
混凝土 /
一期控温 /
通水冷却 /
绝热温升 /
动态预测 /
非线性优化
Key words
concrete /
first stage of temperature control /
water cooling /
adiabatic temperature rise /
dynamic prediction /
nonlinear optimization
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 周建平,杜效鹄,周兴波.世界高坝研究及其未来发展趋势[J].水力发电学报,2019,38(2):1-14.
[2] 张国新,艾永平,刘有志.特高拱坝施工期温控防裂问题的探讨[J].水力发电学报,2010,29(5):125-131.
[3] 张国新,刘 毅,李松辉.“九三一”温度控制模式的研究与实践[J].水力发电学报,2014,33(2):179-184.
[4] NOORZACI J, BAYAGOOB K H. Thermal and Stress Analysis of Kinata RCC Dam[J]. Engineering Structure, 2006, 28: 1795-1802.
[5] SONG Wen-shuai, GUAN Tao, REN Bing-yu, et al. Real-Time Construction Simulation Coupling a Concrete Temperature Field Interval Prediction Model with Optimized Hybrid-Kernel RVM for Arch Dams[J]. Energies, 2020, 13(17): 4487.
[6] FAIRBAIRN E M R, SILVOSO M M, TOLEDO FILHO R D,et al. Optimization of Mass Concrete Construction Using Genetic Algorithms[J]. Computers & Structures, 2004, 82(23): 281-299.
[7] NAJAFI Z, AHANGARI K. The Predictionof Concrete Temperature During Curing Using Regression and Artificial Neural Network[J]. Journal of Engineering, 2013,17: 1-5.
[8] 郭生根,周双喜.基于有限元仿真及神经网络模型相结合的大体积混凝土温度预测方法[J].水利水电技术,2018,49(11):188-196。
[9] 李 杰.基于GA-SVM的混凝土施工期温度快速预测[D].北京:清华大学,2016.
[10]周建兵,黄耀英,何小鹏,等.向家坝导流底孔回填混凝土温度动态预测[J].raybet体育在线
院报,2015,32(2):119-122.
[11]倪智强,周兰庭. 基于改进蚁群算法的混凝土坝热学参数反演[J].水电能源科学, 2018, 36(4): 82-85.
[12]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国水利水电出版社,2012.
[13]朱伯芳.水工混凝土结构的温度应力与温度控制[M]. 北京:水利电力出版社,1976.
基金
国家自然科学基金项目(51879147,52009069);水电工程施工与管理湖北省重点实验室开放基金项目(2019KSD03)