聚氨酯玛蹄脂混合料的设计及性能

张倩, 吕荣培, 马昭, 王永卫

raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (2) : 147-152.

PDF(1271 KB)
PDF(1271 KB)
raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (2) : 147-152. DOI: 10.11988/ckyyb.20200943
水工结构与材料

聚氨酯玛蹄脂混合料的设计及性能

  • 张倩1,2, 吕荣培1,2, 马昭3, 王永卫4
作者信息 +

Design and Performance of Stone Matrix Polyurethane

  • ZHANG Qian1,2, LÜ Rong-pei1,2, MA Zhao3, WANG Yong-wei4
Author information +
文章历史 +

摘要

研究高性能的环境友好型路面材料对经济、环境具有重要的意义。采用聚氨酯胶粘剂代替沥青作为结合料,设计出密实型聚氨酯玛蹄脂混合料(SMPU)。通过飞散试验、析漏试验以及马歇尔试验对SMPU进行配合比设计,以SBS改性沥青混合料(简称SMA)做对比,通过车辙试验、单轴贯入试验、浸水马歇尔试验、冻融劈裂试验以及低温弯曲试验,对SMPU的路用性能进行了评价,并通过不同温度、不同浸泡方式下的抗压、抗折以及劈裂试验,考察了SMPU的力学性能。结果表明:SMPU具有比SMA更优异的高低温及水稳定性能,但负温-水的耦合作用会对其造成较大影响;SMPU的温度敏感性低,在路面正常工作温度内,SMPU的抗压、抗折及劈裂强度分别为17~21 MPa、2.9~3.6 MPa及1.7~1.9 MPa;在不同浸泡方式下,SMPU的3种强度损失率均<7%,能有效抵抗常温下的水损伤。拟合试验数据显示,基于SMPU抗压强度的抗折与劈裂强度转换式相关性高,可为密实型聚氨酯混合料强度相关研究提供参考。在绿色公路建设及路面变形严重区域,SMPU具有广阔的应用前景。

Abstract

Studying high-performance environmental-friendly pavement material is of great significance to economy and environment. A dense polyurethane mastic mixture (SMPU) was designed by using polyurethane adhesive instead of asphalt as binder. The mix ratio of SMPU was designed according to Cantabro scattering loss test, Schellenberg binder drain-down test and Marshall test. With SBS modified asphalt mixture (SMA) as a comparison, the road performance of SMPU was evaluated by rutting test, uniaxial penetration test, immersion Marshall test, freeze-thaw splitting test and low-temperature bending test. The mechanical properties of SMPU were also investigated by compression, bending and splitting tests at different temperatures by different immersion types. Results demonstrate that SMPU has better stability in high and low temperatures and water than SMA; but is greatly affected by the coupling of negative temperature and water. SMPU is lowly sensitive to temperature, and its compressive strength, flexural strength and splitting strength are 17-21 MPa, 2.9-3.6 MPa and 1.7-1.9 MPa, respectively. Under different soaking methods, the loss rates of compressive strength, flexural strength and splitting strength of SMPU are less than 7%, which means that SMPU can effectively resist water damage at normal temperature. Fitting of test data suggest that the conversion formula of flexural strength and splitting strength based on SMPU compressive strength is of high correlation, which offers a reference for the strength-related research of dense polyurethane mixture. In conclusion, SMPU has broad application prospects in green highway construction and areas with severe pavement deformation.

关键词

道路工程 / 聚氨酯玛蹄脂混合料 / 配合比 / 路用性能 / 力学性能

Key words

road engineering / stone matrix polyurethane / mix ratio / road performance / mechanical property

引用本文

导出引用
张倩, 吕荣培, 马昭, 王永卫. 聚氨酯玛蹄脂混合料的设计及性能[J]. raybet体育在线 院报. 2022, 39(2): 147-152 https://doi.org/10.11988/ckyyb.20200943
ZHANG Qian, LÜ Rong-pei, MA Zhao, WANG Yong-wei. Design and Performance of Stone Matrix Polyurethane[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(2): 147-152 https://doi.org/10.11988/ckyyb.20200943
中图分类号: U414   

参考文献

[1] 徐佳骏.宁宿徐高速公路车辙病害处治技术研究[D].扬州:扬州大学,2018.
[2] 郝培文,常 睿,刘红瑛,等.反应性弹性体三元共聚物改性沥青及其混合料性能与机制[J].复合材料学报,2018,35(7):1952-1962.
[3] 郭海鹏,李 刚,刘 杰,等.WG-Ⅰ温拌剂对水工沥青混凝土性能的影响[J].raybet体育在线 院报,2019,36(7):143-148.
[4] 彭 波, 蔡春丽, 胡如安. 高速公路沥青路面能耗与碳排放评价[J].长安大学学报, 2016, 36(5): 8-15.
[5] 田 静. 低能耗沥青路面混合料选型与施工工艺研究[D]. 西安:长安大学,2010.
[6] 杨 松. 水性高分子改性乳化沥青及其混合料性能研究[D]. 北京:北京建筑大学,2016.
[7] 刘树俊. 新型冷拌沥青混合料制备及其性能研究[D]. 青岛:中国石油大学,2016.
[8] 孙明芬. 单组份聚氨酯粉末胶粘剂的制备及性能研究[D]. 吉林:吉林大学,2019.
[9] 吴蕊宁. 环境友好型双组分聚氨酯涂料的研究[D]. 西安:西北大学,2017.
[10]郝 健,宋慧颖,刘双平.聚氨酯(氰凝)在水利水电工程中的应用[J].raybet体育在线 院报,2000,17(6):70-72,75.
[11]王火明,李汝凯,王 秀,等. 多孔隙聚氨酯碎石混合料强度及路用性能[J]. 中国公路学报, 2014, 27(10): 24-31.
[12]王火明,李汝凯,张东长. 聚氨酯碎石混合料路用性能与工程应用[M]. 北京:人民交通出版社,2017.
[13]李汝凯, 王小明, 王火明,等. 聚氨酯碎石透水路面胶水用量试验研究 [J]. 公路工程, 2015, 40(2): 105-108.
[14]孙铭鑫. 聚氨酯空隙弹性路面混合料的性能研究[D]. 南京:东南大学,2016.
[15]WANG Da-wei, SCHACHT A, LENG Zhen, et al. Effects of Material Composition on Mechanical and Acoustic Performance of Poroelastic Road Surface (PERS)[J]. Construction and Building Materials, 2017,135: 352-360.
[16]WANG D,LIU P,LENG Z,et al.Suitability of PoroElastic Road Surface (PERS) for Urban Roads in Cold Regions:Mechanical and Functional Performance Assessment[J]. Journal of Cleaner Production,2017,165:1340-1350.
[17]LIN Cong, WANG Tong-jing, TAN Le, et al. Laboratory Evaluation on Performance of Porous Polyurethane Mixtures and OGFC[J]. Construction and Building Materials, 2018, 169: 436-442.
[18]李添帅,陆国阳,王大为,等.高性能聚氨酯透水混合料关键性能研究[J].中国公路学报,2019,32(4):158-169.
[19]何建彬. 聚氨酯混合料压实特性研究[D]. 北京:北京建筑大学,2019.
[20]王立志,贾致荣,付鲁鑫,等.排水性聚氨酯稳定再生集料最佳胶石比与组分比[J].科学技术与工程,2019,19(16):351-356.
[21]仝玎朔. 聚氨酯弹性材料组成设计及路用性能研究[D]. 西安:长安大学,2018.
[22]SUN Min, BI Yu-feng, ZHENG Mu-lian, et al. Performance of Polyurethane Mixtures with Skeleton-Interlocking Structure[J]. Journal of Materials in Civil Engineering, 2020, 32(2),doi:04019358-1-04019358-11.
[23]GAO Jun-feng, WANG Hai-nian, CHEN Jia-kang, et al. Laboratory Evaluation on Comprehensive Performance of Polyurethane Rubber Particle Mixture[J]. Construction and Building Materials ,2019, 224: 29-39.
[24]JTG E20—2011,公路工程沥青及沥青混合料试验规程[S].北京:人民交通出版社,2011.
[25]JTG D50—2017, 公路沥青路面设计规范[S].北京:人民交通出版社.2017.
[26]JTG 3420—2020, 公路工程水泥及水泥混凝土试验规程 [S].北京:人民交通出版社.2020.
[27]JTG D40—2001,公路水泥混凝土路面设计规范[S].北京:人民交通出版社,2005

基金

浙江省公路与运输管理中心资助项目(2019H01);衢州市科技计划项目(2019KK39)

PDF(1271 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map