Analysis of Bank Collapse at “Tianzi-1” Revetment Section in Hunan Segment of Lower Jingjiang River in 2023

CHEN Yi-min, LIN Dang, YANG Tian-tian, ZHENG Bao, ZHANG Guo-hua, LI Ling-yun, GUO Chao

Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (6) : 8-13.

PDF(6096 KB)
PDF(6096 KB)
Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (6) : 8-13. DOI: 10.11988/ckyyb.20240324
River-Lake Protection And Regulation

Analysis of Bank Collapse at “Tianzi-1” Revetment Section in Hunan Segment of Lower Jingjiang River in 2023

Author information +
History +

Abstract

[Objectives] Since the operation of the Three Gorges Project and the cascade reservoirs in the upper reaches of the Yangtze River, the new water and sediment regime has caused large-scale and high-intensity continuous erosion in the Jingjiang River section of the middle Yangtze River, resulting in recurrent bank collapse incidents at some revetment sections. To investigate the causes of recent bank collapses at revetment sections and better respond to such dangerous situations, this study examines the sudden bank collapse and its emergency treatment at the “Tianzi-1” revetment section in the lower Jingjiang River in 2023. [Methods] Measured water and sediment data at Jianli station since 1990, annual erosion and deposition data of the lower Jingjiang River since 2003, and measured data on channel topographic changes and geological drilling before and after the bank collapse at the “Tianzi-1” section were used to analyze the causes. [Results] In November 2023, continuous cave-in-type bank collapses occurred at the “Tianzi-1” revetment section in the Hunan segment of the lower Jingjiang River, with collapse lengths of approximately 100 m and 35 m, respectively. The results showed that the bank collapse primarily resulted from continuous riverbed erosion under the clear-water discharge condition, significant changes in local river regime causing deep channel and thalweg migration toward banks, poor geological conditions of the riverbank slope, and the influence of prolonged low-to-medium water levels. Based on the characteristics of the dangerous situation, an underwater stone dumping method was adopted for emergency treatment of the collapsed section and the affected upper and lower reaches. [Conclusions] This recurrent bank collapse at the revetment section highlights that the lower Jingjiang River will continue to face severe threats of bank collapse for the foreseeable future. Without timely reinforcement measures, large-scale damage can occur to existing bank protection structures, seriously threatening flood control safety. Therefore, this study proposes medium-to-long-term governance measures, including establishing institutional frameworks as soon as possible, securing construction funding, strengthening dynamic monitoring of slope toe variations at dangerous sections, enhancing the development of bank failure control technologies, and improving the monitoring, early warning, and emergency response mechanisms for bank collapse.

Key words

bank collapse / water and sediment regime / channel evolution / emergency treatment / lower Jingjiang River

Cite this article

Download Citations
CHEN Yi-min , LIN Dang , YANG Tian-tian , et al . Analysis of Bank Collapse at “Tianzi-1” Revetment Section in Hunan Segment of Lower Jingjiang River in 2023[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(6): 8-13 https://doi.org/10.11988/ckyyb.20240324

References

[1]
许全喜, 董炳江, 袁晶, 等. 三峡工程运用后长江中下游河道冲刷特征及其影响[J]. 湖泊科学, 2023, 35(2):650-661.
(XU Quan-xi, DONG Bing-jiang, YUAN Jing, et al. Scouring Effect of the Middle and Lower Reaches of the Yangtze River and Its Impact after the Impoundment of the Three Gorges Project[J]. Journal of Lake Sciences, 2023, 35(2): 650-661. (in Chinese))
[2]
张幸农, 假冬冬, 陈长英. 长江中下游崩岸时空分布特征与规律[J]. 应用基础与工程科学学报, 2021, 29(1):55-63.
(ZHANG Xing-nong, JIA Dong-dong, CHEN Chang-ying. The Spatial and Temporal Distribution Characteristic of Bank Collapses in the Middle and Lower Reaches of the Yangtze River[J]. Journal of Basic Science and Engineering, 2021, 29(1): 55-63. (in Chinese))
[3]
Y, ZHENG S, TAN G, et al. Effects of Three Gorges Dam Operation on Spatial Distribution and Evolution of Channel Thalweg in the Yichang-Chenglingji Reach of the Middle Yangtze River, China[J]. Journal of Hydrology, 2018, 565: 429-442.
[4]
卢金友, 朱勇辉, 岳红艳, 等. 长江中下游崩岸治理与河道整治技术[J]. 水利水电快报, 2017, 38(11):6-14.
(LU Jin-you, ZHU Yong-hui, YUE Hong-yan, et al. Bank Collapse Control and River Regulation Technology in the Middle and Lower Reaches of the Yangtze River[J]. Express Water Resources & Hydropower Information, 2017, 38(11):6-14. (in Chinese))
[5]
姚仕明, 黎礼刚, 岳红艳, 等. 长江中下游崩岸机理与护岸工程技术回顾与展望[J]. 中国防汛抗旱, 2022, 32(9):7-15.
(YAO Shi-ming, LI Li-gang, YUE Hong-yan, et al. Review and Prospect of Bank Collapse Mechanism and Bank Protection Engineering Technology in the Middle and Lower Yangtze River[J]. China Flood & Drought Management, 2022, 32(9):7-15. (in Chinese))
[6]
金兴平, 丁胜祥. 后三峡时代长江防洪形势与对策思考[J]. 长江技术经济, 2023, 7(5): 38-44.
(JIN Xing-ping, DING Sheng-xiang. Flood Control Situation and Countermeasures of the Yangtze River in the Post Three Gorges Era[J]. Technology and Economy of Changjiang, 2023, 7(5): 38-44. (in Chinese))
[7]
岳阳市水利水电勘测设计院. 湖南省岳阳市长江湖南段华容县天字一号崩岸应急抢险工程设计报告[R]. 岳阳: 岳阳市水利水电勘测设计院, 2024.
(Yueyang Water Resources and Hydropower Survey and Design Institute. Design Report on Emergency Rescue Project for Bank Collapse of “Tianzi-1” Section in Huarong County, Yueyang City, Hunan Province, China[R]. Yueyang: Yueyang Water Resources and Hydropower Survey and Design Institute, 2024. (in Chinese))
[8]
余文畴. 长江中游下荆江蜿蜒型河道成因初步研究[J]. raybet体育在线 院报, 2006, 23(6): 9-13.
Abstract
描述了下荆江蜿蜒型河道河型特点。在前人所作下荆江成因研究的基础上,分析指出了下荆江蜿蜒型河道形成条件,即通过加大河长耗散富余能量并与相对较大的含沙量相适应形成蜿蜒河型,表现为河道纵向输沙平衡条件和适度抗冲的二元相结构边界条件。并将其与长江中下游分汊型河道成因进行对比分析,提出了二者在河型调整中的共性和特性。  
(YU Wen-chou. Preliminary Study on Forming Condition of Lower Jingjiang Meandering Channels of Middle Yangtze River[J]. Journal of Yangtze River Scientific Research Institute, 2006, 23(6): 9-13. (in Chinese))
[9]
LIU W L. Analysis on Bank Collapse Mechanism of Typical Reaches in Middle and Lower Yangtze River[J]. Advanced Materials Research, 2013, 779/780: 1537-1542.
[10]
YANG Y, ZHOU L, ZHU L, et al. Impact of Upstream Reservoirs on Geomorphic Evolution in the Middle and Lower Reaches of the Yangtze River[J]. Earth Surface Processes and Landforms, 2023, 48(3): 582-595.
[11]
陈栋, 姚仕明, 李凌云, 等. 三峡建库后下荆江连续急弯河段冲淤时空分布及其影响因素[J]. 应用基础与工程科学学报, 2024, 32(2):410-425.
(CHEN Dong, YAO Shi-ming, LI Ling-yun, et al. Erosion-accretion Spatiotemporal Distribution in the Continuous Sharp Bend of the Lower Jingjiang River and Its Influencing Factors since the Construction of the Three Gorges Dam[J]. Journal of Basic Science and Engineering, 2024, 32(2):410-425. (in Chinese))
[12]
夏军强, 宗全利, 许全喜, 等. 下荆江二元结构河岸土体特性及崩岸机理[J]. 水科学进展, 2013, 24(6): 810-820.
(XIA Jun-qiang, ZONG Quan-li, XU Quan-xi, et al. Soil Properties and Erosion Mechanisms of Composite Riverbanks in Lower Jingjiang Reach[J]. Advances in Water Science, 2013, 24(6): 810-820. (in Chinese))
[13]
刘昭希, 王军, 周银军, 等. 长江荆江段二元结构河岸土体力学性能及崩塌试验[J]. raybet体育在线 院报, 2023, 40(2): 7-13, 26.
Abstract
通过连续3 a对荆江崩岸情况进行现场调查、室内土工试验和概化模型试验,分析荆江崩岸特点及规律、河岸上部黏性土的物理及力学性能以及二元结构河岸崩塌过程的特点和影响因素。结果表明:荆江段崩岸分布规律主要表现为下荆江多于上荆江,左岸多于右岸;二元结构河岸崩塌过程可概括为坡脚受冲刷变陡,岸顶裂缝形成发育,岸坡渐进侵蚀,河岸失稳导致崩塌,岸坡形态趋于稳定,进入下一次河岸崩塌循环;黏性土含水率对水位变化的响应速度快于对浸泡时长的响应速度;黏性土的起动切应力为0.531 N/m<sup>2</sup>,影响黏聚力值的临界含水率约为16%,受纵向水流及土体含水率的影响,岸坡在枯水期稳定性较高,在涨水期会产生局部崩岸,洪水期和退水期时坡脚冲刷和崩岸强烈。
(LIU Zhao-xi, WANG Jun, ZHOU Yin-jun, et al. Mechanical Properties and Collapse Test of Composite Riverbanks in Jingjiang Reach of Changjiang River[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(2): 7-13, 26. (in Chinese))
[14]
彭玉明, 熊超, 杨朝云. 长江荆江河道演变与崩岸关系分析[J]. 水文, 2010, 30(6): 29-31, 36.
(PENG Yu-ming, XIONG Chao, YANG Chao-yun. Analysis of Relationship between Fluvial Process and Bank Caving in the Jingjiang Reach of Yangtze River[J]. Journal of China Hydrology, 2010, 30(6): 29-31, 36. (in Chinese))
[15]
夏军强, 林芬芬, 周美蓉, 等. 三峡工程运用后荆江段崩岸过程及特点[J]. 水科学进展, 2017, 28(4):543-552.
(XIA Jun-qiang, LIN Fen-fen, ZHOU Mei-rong, et al. Bank Retreat Processes and Characteristics in the Jingjiang Reach after the Three Gorges Project Operation[J]. Advances in Water Science, 2017, 28(4): 543-552. (in Chinese))
[16]
邓珊珊, 夏军强, 李洁, 等. 河道内水位变化对上荆江河段岸坡稳定性影响分析[J]. 水利学报, 2015, 46(7):844-852.
(DENG Shan-shan, XIA Jun-qiang, LI Jie, et al. Influence of the Variation of In-channel Water Levels on the Riverbank Stability in the Upper Jingjiang Reach[J]. Journal of Hydraulic Engineering, 2015, 46(7): 844-852. (in Chinese))
[17]
李享, 邓彩云, 李凌云. 河道崩岸评估方法研究进展[J]. 水利建设与管理, 2023, 43(8): 10-17.
(LI Xiang, DENG Cai-yun, LI Ling-yun. Research Progress on Assessment Methods of River Bank Collapse[J]. Water Conservancy Construction and Management, 2023, 43(8): 10-17. (in Chinese))
[18]
夏军强, 邓珊珊, 李诺, 等. 长江中游河道崩岸预警技术及其初步应用[J]. 中国防汛抗旱, 2022, 32(9):21-26.
(XIA Jun-qiang, DENG Shan-shan, LI Nuo, et al. Early-warning Technology of Bank Erosion and Its Preliminary Application in the Middle Yangtze River[J]. China Flood & Drought Management, 2022, 32(9): 21-26. (in Chinese))
[19]
周建红. 荆江河道险工险段崩岸监测技术与预警方法探讨[J]. 水利水电快报, 2017, 38(12): 12-16.
(ZHOU Jian-hong. Discussion on Monitoring Technology and Early Warning Method of Bank Collapse in Dangerous Sections of Jingjiang River[J]. Express Water Resources & Hydropower Information, 2017, 38(12): 12-16. (in Chinese))
PDF(6096 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map