Spatiotemporal Variation Characteristics of Baseflow in the Upper Yangtze River Based on Digital Filter Method

SUN Zhi-wei, LIANG Yue, NIU Xin-qiang

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (11) : 23-28.

PDF(6744 KB)
PDF(6744 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (11) : 23-28. DOI: 10.11988/ckyyb.20230043
Water Resources

Spatiotemporal Variation Characteristics of Baseflow in the Upper Yangtze River Based on Digital Filter Method

  • SUN Zhi-wei1, LIANG Yue1, NIU Xin-qiang1,2
Author information +
History +

Abstract

Accurately depicting the spatial and temporal distribution characteristics of base flow in the upper Yangtze River is crucial for the rational development and utilization of water resources, particularly as it serves as a significant recharge source for river runoff during dry season. To achieve this, we combined the digital filtering method and the distributed hydrological model SWAT to analyze the time characteristics of base flow. Additionally, we employed a spatial interpolation method to describe the spatial distribution of base flow in the upper Yangtze River. The results demonstrate that the value and modulus of average annual base flow in the upper Yangtze River ranged from 5 to 9 500 m3/s and 0.36 to 28.00 L/(km2·s) during the period from 1990 to 2000. Furthermore, we found a clear positive correlation of annual runoff and base flow with annual precipitation, whereas the base flow index (BFI) shows a distinct negative correlation with annual precipitation. The BFI exhibits relatively stable inter-annual variation, with a variation within the year showing a higher base flow during the dry season compared to the wet season. This indicates the crucial role of base flow in supplying rivers. In terms of seasonal variation, summer sees the largest base flow, followed by autumn, winter, and spring in sequential order, reflecting that base flow in wet season is larger than that in dry season. Moreover, the base flow in the upper Yangtze River basin increases progressively with an increase in runoff generation and concentration area.

Key words

baseflow / dry season / digital filter method / SWAT model / the upper Yangtze river

Cite this article

Download Citations
SUN Zhi-wei, LIANG Yue, NIU Xin-qiang. Spatiotemporal Variation Characteristics of Baseflow in the Upper Yangtze River Based on Digital Filter Method[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(11): 23-28 https://doi.org/10.11988/ckyyb.20230043

References

[1] 雷宇宽. 酉阳河流域典型年汛期的基流分割研究[J]. 水文, 2021, 41(1): 35-41.
[2] 刘新有, 谢飞帆. 基于数字滤波法的怒江流域基流时空分异[J]. 水资源保护, 2017, 33(1): 18-23.
[3] 胡 胜, 杨冬冬, 吴 江, 等. 基于数字滤波法和SWAT模型的灞河流域基流时空变化特征研究[J]. 地理科学, 2017, 37(3): 455-463.
[4] 陈 帅, 鲁程鹏, 李姝蕾, 等. 长江干流朱沱站-大通站基流变化特征分析[J]. 南水北调与水利科技, 2015, 13(5): 823-826, 836.
[5] 张军龙. 基于基流分割的流域地下水-地表水相互作用研究[D]. 西安: 西北大学, 2017.
[6] 王 冠, 鲁程鹏, 李姝蕾, 等. 五种基流分割方法在长江螺山站的应用对比研究[J]. 水资源与水工程学报, 2015, 26(3): 118-123.
[7] 徐磊磊, 刘敬林, 金昌杰, 等. 水文过程的基流分割方法研究进展[J]. 应用生态学报, 2011, 22(11): 3073-3080.
[8] 李姝蕾, 鲁程鹏, 李 伟, 等. 长江螺山站50年来基流演变趋势分析[J]. 水资源与水工程学报, 2015, 26(5): 128-131.
[9] 黄珊珊,董前进.长江流域上中下游基流演变规律及与降水量关联分析[J].水电能源科学,2022,40(7):10-13.
[10] 李光录,樊立娟.长江源区基流分割方法对比及基流特征分析[J].raybet体育在线 院报,2023,40(4):185-190.
[11] 任俊霖,匡 洋.长江经济带流域横向生态补偿进展、困境与优化路径[J].raybet体育在线 院报,2023,40(5):9-14, 21.
[12] 熊一橙, 徐 炜, 张 锐, 等. 基于LSTM网络的长江上游流域径流模拟研究[J]. 水电能源科学, 2021, 39(9): 22-24, 40.
[13] 赵美玲. 长江上游流域非点源污染模拟与分析[D]. 北京: 清华大学, 2014.
[14] 李 凯, 王永强, 许继军, 等. 基于SWAT模型的巴勒更河流域降雨-径流关系[J]. raybet体育在线 院报, 2022, 39(4): 41-48.
[15] 朱 烨, 方秀琴, 王 凯, 等. 基于SWAT模型的延河流域月径流量模拟分析[J]. raybet体育在线 院报, 2016, 33(10): 41-45.
[16] ARNOLD J G, ALLEN P M. Automated Methods for Estimating Baseflow and Ground Water Recharge from Streamflow Records[J]. Journal of the American Water Resources Association, 1999, 35(2): 411-424.
[17] ARNOLD J G, ALLEN P M, MUTTIAH R, et al. Automated Base Flow Separation and Recession Analysis Techniques[J]. Ground Water,1995,33(6):1010-1018.
[18] 陈长征, 甘 容, 杨 峰, 等. 基于SWAT的径流模拟参数优化方案及不确定性分析[J]. 人民长江, 2022, 53(7): 82-89.
[19] 赵安周,刘宪锋,朱秀芳,等.基于SWAT模型的渭河流域干旱时空分布[J].地理科学进展,2015,34(9):1156-1166.
[20] 程 艳, 敖天其, 黎小东, 等. 基于参数移植法的SWAT模型模拟嘉陵江无资料地区径流[J]. 农业工程学报, 2016, 32(13): 81-86.
[21] 贾玉雪, 张 奇, 曾冰茹, 等. 湘江流域多源降水与气温产品组合的径流极值模拟精度评价[J]. 河海大学学报(自然科学版), 2023, 51(2): 8-16, 163.
[22] 胡 胜. 基于SWAT模型的北洛河流域生态水文过程模拟与预测研究[D]. 西安: 西北大学, 2015.
[23] 张洪波, 支 童, 卫星辰, 等. 基于SWAT-MODFLOW的黄河中游区径流过程模拟及对黄土高原变绿的响应[J]. 华北水利水电大学学报(自然科学版), 2020, 41(6): 1-10.
[24] 石建杨, 李向新. 基于SWAT模型的滇池流域不同时间尺度径流模拟[J]. 水电能源科学, 2022, 40(8): 37-40, 53.
[25] 王一然, 丁文峰, 张冠华. 基于SWAT模型的丹江流域土地利用变化对径流影响研究[J]. 水土保持研究, 2022, 29(4): 62-67, 74.
[26] 徐东霞,章光新,尹雄锐.近50年嫩江流域径流变化及影响因素分析[J]. 水科学进展,2009,20(3):416-421.
PDF(6744 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map