To explore the correlation between karst groundwater level, precipitation, and Yellow River water level in Changqing District, Jinan City, we utilized long-term monitoring data of four karst groundwater levels in the Changqing-Xiaolipu hydrogeological unit from 2007 to 2019, alongside data on precipitation and Yellow River water level during the same period. By applying wavelet coherence and multiple wavelet coherence methods to analyze the data, we found the following results: 1) There are significant continuous or discontinuous one-year and half-year high-frequency main oscillation cycles in the dynamics of karst groundwater level. 2) The average wavelet coherence (AWC) and percent area of significant coherence (PASC) mean values between karst groundwater level and precipitation are 0.47 and 20.64%, respectively. The mean AWC and PASC between groundwater level and Yellow River water level are 0.42 and 13.00% respectively. Precipitation has a greater impact on groundwater level than the Yellow River water level. 3) The multiple wavelet coherence (MWC) between karst groundwater level and precipitation and Yellow River water level in Guangli Village of Xiaoli Town and Guide Town-Wenchang Street area increased by at least 5% compared to AWC, indicating that the karst groundwater level in this area is affected by both precipitation and Yellow River water level. These research findings are highly significant for further understanding the transformation relationship among precipitation, surface water, and groundwater. Furthermore, our findings could potentially benefit spring protection and water supply along the Yellow River in Jinan.
Key words
groundwater level /
precipitation /
Yellow River water level /
multiple wavelet coherence
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 王文科, 孔金玲, 段 磊, 等. 黄河流域河水与地下水转化关系研究[J]. 中国科学E辑: 技术科学, 2004, 34(增刊1): 23-33.
[2] 袁红卫, 崔绍峰, 张安昌. 黄河聊城段侧渗分析研究[J]. 地下水, 2005, 27(4): 247-249.
[3] 齐 欢.R/S和Mann-Kendall法在济南市地下水管理模型中的应用[J].中国农村水利水电,2019(8):20-25.
[4] 秦品瑞. 济南岩溶水系统数值模拟与保泉供水开采方案[J]. 水资源保护, 2018, 34(3): 30-36, 103.
[5] 张晨晨, 黄 翀, 何 云, 等. 黄河三角洲浅层地下水埋深动态与降水的时空响应关系[J]. 水文地质工程地质, 2020, 47(5): 21-30.
[6] 薄克庭, 蔡有兄. 长清—孝里铺水文地质单元岩溶地下水资源量计算及开采潜力分析[J]. 山东国土资源, 2015, 31(12): 37-42.
[7] TORRENCE C, COMPO G P. A Practical Guide to Wavelet Analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 61-78.
[8] 王 涛, 霍彦峰, 罗 艳. 近300 a来天山中西部降水与太阳活动的小波分析[J]. 干旱区研究, 2016, 33(4): 708-717.
[9] 张华栋, 桑宇婷. ENSO循环对汾河上游径流变化的影响[J]. 中国农村水利水电, 2020(4): 71-75, 81.
[10]HU W, SI B C. Technical Note: Multiple Wavelet Coherence for Untangling Scale-Specific and Localized Multivariate Relationships in Geosciences[J]. Hydrology and Earth System Sciences, 2016, 20(8): 3183-3191.
[11]祁晓凡, 杨丽芝, 韩 晔, 等. 济南泉域地下水位动态及其对降水响应的交叉小波分析[J]. 地球科学进展, 2012, 27(9): 969-978.
[12]郑丽爽, 于大潞, 赵宇辉. 由抽水试验成果谈济南长孝水源地回灌补源[J]. 山东国土资源, 2015, 31(6): 34-37.
[13]WANG J, SHI B, ZHAO E, et al. Synergistic Effects of Multiple Driving Factors on the Runoff Variations in the Yellow River Basin, China[J]. Journal of Arid Land, 2021, 13(8): 835-857.
[14]LI S,LIU N,TANG L,et al. Mutation Test and Multiple-Wavelet Coherence of PM_2.5 Concentration in Guiyang, China[J]. Air Quality, Atmosphere & Health, 2021, 14(7): 955-966.
[15]HU W, SI B C, BISWAS A, et al. Temporally Stable Patterns but Seasonal Dependent Controls of Soil Water Content: Evidence from Wavelet Analyses[J]. Hydrological Processes, 2017, 31(21): 3697-3707.
[16]NG E K W, CHAN J C L. Geophysical Applications of Partial Wavelet Coherence and Multiple Wavelet Coherence[J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(12): 1845-1853.
[17]徐跃通, 冯海霞, 吴元芳, 等. 黄河济南段水资源特点与可持续利用对策[J]. 自然资源学报, 2001, 16(2): 128-133.