Research Advances in Morphological Evolution of Lakes Connecting the Yangtze River and Its Influences

YAO Shi-ming, HU Cheng-wei, QU Geng, CHAI Zhao-hui, LUAN Hua-long

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (9) : 15-23.

PDF(8413 KB)
PDF(8413 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (9) : 15-23. DOI: 10.11988/ckyyb.20220304
RIVER-LAKE PROTECTION AND REGULATION

Research Advances in Morphological Evolution of Lakes Connecting the Yangtze River and Its Influences

  • YAO Shi-ming1,2, HU Cheng-wei1,2, QU Geng1,2, CHAI Zhao-hui1,2, LUAN Hua-long1,2
Author information +
History +

Abstract

On the basis of extensive review of relevant literatures in China and abroad, we summarize and analyse the research progresses on three hot issues concerning two river-connecting lakes in the middle and lower reaches of the Yangtze River, namely, the Dongting Lake and the Poyang Lake. Such issues include: water and sediment transport law, erosion and deposition evolution law, and their impacts on flood/dry regulation function. We also put forward such aspects to be strengthened corresponding to the shortcomings of current research as follows: 1) the quantitative evolution mechanism of the two lakes under natural and human influences, including the evolution of the two lakes in the period of scarce data, identification of the impact of natural factors on the erosion/deposition of the two lakes, and the natural erosion/deposition of the two lakes in the period of intensified human activities, etc; 2) forecasting the trend of long-term and wide-range erosion and deposition of the two lakes, transforming from total sediment deposition forecast of the two lakes to prediction of spatio-temporal distribution pattern of sediment deposition; 3) indicative assessment of the impact of the evolution of the two lakes on flood/dry regulation function, including indicators characterizing the flood/dry regulation function of the lakes and their responses to different scouring and silting scenarios in the future.

Key words

lake evolution / erosion and deposition pattern / river-lake relationship / future evolution scenarios / effect of flood/dry regulation

Cite this article

Download Citations
YAO Shi-ming, HU Cheng-wei, QU Geng, CHAI Zhao-hui, LUAN Hua-long. Research Advances in Morphological Evolution of Lakes Connecting the Yangtze River and Its Influences[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(9): 15-23 https://doi.org/10.11988/ckyyb.20220304

References

[1] 卢金友,姚仕明. 水库群联合作用下长江中下游江湖关系响应机制[J]. 水利学报,2018,49(1): 36-46.
[2] 马建华. 2020年长江流域防洪减灾工作实践及思考[J]. 人民长江,2020,51(12): 1-7.
[3] 吴桂平,刘元波,范兴旺. 近30年来鄱阳湖湖盆地形演变特征与原因探析[J]. 湖泊科学,2015,27(6): 1168-1176.
[4] 杨桂山,马超德,常思勇.长江保护与发展报告2009[M].武汉:长江出版社,2009.
[5] DAI S, YANG S, ZHU J, et al. The Role of Lake Dongting in Regulating the Sediment Budget of the Yangtze River[J]. Hydrology and Earth System Sciences, 2005, 9(6): 692-698.
[6] DAI Z, DU J, LI J, et al. Runoff Characteristics of the Changjiang River during 2006: Effect of Extreme Drought and the Impounding of the Three Gorges Dam[J]. Geophysical Research Letters, 2008, 35(7): 521-539.
[7] XU K, MILLIMAN J. Seasonal Variations of Sediment Discharge from the Yangtze River before and after Impoundment of the Three Gorges Dam[J]. Geomorphology, 2009, 104(3/4): 276-283.
[8] 罗 蔚,张 翔,邓志民,等. 1956—2008年鄱阳湖流域水沙输移趋势及成因分析[J]. 水科学进展,2014,25(5): 658-667.
[9] KNOWLTON M F, JONES J R. Trophic Status of Missouri River Floodplain Lakes in Relation to Basin Type and Connectivity[J]. Wetlands, 1997, 17(4): 468-475.
[10] BESEMER K, MOESENEDER M M, ARRIETA J M, et al. Complexity of Bacterial Communities in a River-Floodplain System (Danube, Austria)[J]. Applied and Environmental Microbiology, 2005, 71(2): 609-620.
[11] LESACK L F W, MARSH P. River-to-Lake Connectivities, Water Renewal, and Aquatic Habitat Diversity in the Mackenzie River Delta[J]. Water Resources Research, 2010, 46(12): 439-445.
[12] KUMMU M, TES S, YIN S, et al. Water Balance Analysis for the Tonle Sap Lake-Floodplain System[J]. Hydrological Processes, 2014, 28: 1722-1733.
[13] 窦鸿身,姜加虎. 中国五大淡水湖[M]. 北京:中国科学技术大学出版社,2003.
[14] 梁 杏,张人权,皮建高,等. 构造沉降对近代洞庭湖区演变的贡献:答李春初先生对《洞庭湖地质环境系统分析》的质疑[J].海洋与湖沼,2001(6):690-696.
[15] 李春初. 构造沉降是控制近代洞庭湖演变的关键因素吗?:评《洞庭湖地质环境系统分析》[J].海洋与湖沼,2000(4):460-464.
[16] 郭小虎,姚仕明,晏黎明. 荆江三口分流分沙及洞庭湖出口水沙输移的变化规律[J].raybet体育在线 院报,2011,28(8):80-86.
[17] 郭小虎,李义天,刘 亚. 近期荆江三口分流分沙比变化特性分析[J].泥沙研究,2014(1):53-60.
[18] 陈 栋,渠 庚,郭小虎,等. 三峡建库前后洞庭湖对下荆江的顶托与消落作用研究[J].工程科学与技术,2020,52(2):86-94.
[19] 王大宇,关见朝,方春明,等. 水利枢纽运用对江湖关系影响的模拟[J]. 泥沙研究,2018,43(1): 1-8,80.
[20] 卢金友,罗恒凯. 长江与洞庭湖关系变化初步分析[J]. 人民长江,1999(4): 25-27,49.
[21] LIU Y,WU G,ZHAO X. Recent Declines in China’s Largest Freshwater Lake: Trend or Regime Shift?[J]. Environmental Research Letters,2013,8(1):14010-14019.
[22] 渠 庚,郭小虎,朱勇辉,等. 三峡工程运用后荆江与洞庭湖关系变化分析[J].水力发电学报,2012,31(5):163-172.
[23] 朱玲玲,陈剑池,袁 晶,等. 洞庭湖和鄱阳湖泥沙冲淤特征及三峡水库对其影响[J]. 水科学进展,2014,25(3): 348-357.
[24] 胡春宏,王延贵. 三峡工程运行后泥沙问题与江湖关系变化[J]. raybet体育在线 院报,2014,31(5): 107-116.
[25] 刘志刚,倪兆奎. 鄱阳湖发展演变及江湖关系变化影响[J]. 环境科学学报,2015,35(5): 1265-1273.
[26] 周永强,李景保,张运林,等. 三峡水库运行下洞庭湖盆冲淤过程响应与水沙调控阈值[J]. 地理学报,2014,69(3): 409-421.
[27] 仲志余,余启辉. 洞庭湖和鄱阳湖水量优化调控工程研究[J]. 人民长江,2015,46(19): 52-57.
[28] 姚仕明,卢金友. 长江中下游河道演变规律及冲淤预测[J]. 人民长江,2013,44(23): 22-28.
[29] 郭小虎,李义天,渠 庚,等. 三峡工程蓄水后长江中游泥沙输移规律分析[J].泥沙研究,2014(5):11-17.
[30] 郭小虎,渠 庚,刘 亚,等. 三峡工程运用后坝下游河道泥沙输移变化规律[J].湖泊科学,2020,32(2):564-572.
[31] 刘晓群,易放辉,栾震宇,等. 东洞庭湖近期冲淤演变分析[J]. 泥沙研究,2019,44(4): 25-32.
[32] 宋 平,方春明,黎昔春,等. 洞庭湖泥沙输移和淤积分布特性研究[J].raybet体育在线 院报,2014,31(6):130-134.
[33] 姚仕明,卢金友. 三峡水库蓄水运用前后坝下游水沙输移特性研究[J].水力发电学报,2011,30(3):117-123.
[34] 姜加虎,黄 群,孙占东. 洞庭湖泥沙淤积与洲滩变化研究[J]. 人民长江,2009,40(14): 74-75.
[35] 吴桂平,刘元波,范兴旺.近30年来鄱阳湖湖盆地形演变特征与原因探析[J].湖泊科学,2015,27(6):1168-1176.
[36] 余姝辰,王伦澈,夏卫平,等. 清末以来洞庭湖区通江湖泊的时空演变[J]. 地理学报,2020,75(11): 2346-2361.
[37] 余姝辰,余德清,王伦澈,等. 三峡水库运行前后洞庭湖洲滩面积变化遥感认识[J]. 地球科学,2019,44(12): 4275-4283.
[38] 董增川,梁忠民,李大勇,等. 三峡工程对鄱阳湖水资源生态效应的影响[J]. 河海大学学报(自然科学版),2012,40(1): 13-18.
[39] 彭 俊. 1950年以来鄱阳湖流域水沙变化规律及影响因素分析[J]. 长江流域资源与环境,2015,24(10): 1751-1761.
[40] 胡光伟,毛德华,李正最,等. 荆江三口60 a来入湖水沙变化规律及其驱动力分析[J]. 自然资源学报,2014,29(1): 129-142.
[41] 赖锡军,黄 群,张英豪,等. 鄱阳湖泄流能力分析[J]. 湖泊科学,2014,26(4): 529-534.
[42] 赖锡军,姜加虎,黄 群. 三峡工程蓄水对鄱阳湖水情的影响格局及作用机制分析[J]. 水力发电学报,2012,31(6): 132-136,148.
[43] 渠 庚,刘心愿,郭小虎,等. 三峡工程运用前后藕池口分流分沙变化规律分析[J].水利学报,2013,44(9):1099-1106.
[44] 彭 薇,霍军军,许继军. 鄱阳湖枯水期入湖径流变化特征分析[J].raybet体育在线 院报,2016,33(3):19-22.
[45] BISAI D, CHATTERJEE S, KHAN A, et al. Application of Sequential Mann-Kendall Test for Detection of Approximate Significant Change Point in Surface Air Temperature for Kolkata Weather Observatory, West Bengal, India[J]. International Journal of Current Research, 2014, 6(2): 5319-5324.
[46] YUAN Y, ZENG G, LIANG J, et al. Variation of Water Level in Dongting Lake over a 50-Year Period: Implications for the Impacts of Anthropogenic and Climatic Factors[J]. Journal of Hydrology, 2015, 525: 450-456.
[47] 王然丰,李志萍,赵贵章,等. 近60年鄱阳湖水情演变特征[J]. 热带地理,2017,37(4): 512-521.
[48] YAO J, ZHANG Q, YE X, et al. Quantifying the Impact of Bathymetric Changes on the Hydrological Regimes in a Large Floodplain Lake: Poyang Lake[J]. Journal of Hydrology, 2018, 561: 711-723.
[49] GUO L, SU N, ZHU C, et al. How Have the River Discharges and Sediment Loads Changed in the Changjiang River Basin Downstream of the Three Gorges Dam?[J]. Journal of Hydrology, 2018, 560: 259-274.
[50] 程俊翔,徐力刚,姜加虎,等. 洞庭湖流域径流量对气候变化和人类活动的响应研究[J].农业环境科学学报,2016,35(11):2146-2153.
[51] YU Y, MEIA X, DAIA Z, et al. Hydromorphological Processes of Dongting Lake in China between 1951 and 2014[J]. Journal of Hydrology, 2018, 562: 254-266.
[52] LU C, JIA Y, JING L, et al. Shifts in River-floodplain Relationship Reveal the Impacts of River Regulation: A Case Study of Dongting Lake in China[J]. Journal of Hydrology, 2018, 559: 932-941.
[53] 刘同宦,安智伟,柴朝晖,等. 鄱阳湖五河入湖水沙通量及典型断面形态变化特性分析[J]. raybet体育在线 院报,2020,37(11): 8-13,39.
[54] 朱玲玲,陈剑池,袁 晶,等. 基于时段控制因子的荆江三口分流变化趋势研究[J].水力发电学报,2015,34(2):103-111.
[55] 邴建平,邓鹏鑫,吕孙云,等. 鄱阳湖与长江干流水量交换效应及驱动因素分析[J].中国科学:技术科学,2017,47(8): 856-870.
[56] 张范平,方少文,周祖昊,等. 鄱阳湖水位多时间尺度动态变化特性分析[J]. 长江流域资源与环境,2017,26(1): 126-133.
[57] GUO H, QI H, ZHANG Q, et al. Effects of the Three Gorges Dam on Yangtze River Flow and River Interaction with Poyang lake, China: 2003-2008[J]. Journal of Hydrology, 2012, 416 (24): 19-27.
[58] 程俊翔,徐力刚,王 青,等. 洞庭湖近30 a水位时空演变特征及驱动因素分析[J]. 湖泊科学,2017,29(4): 974-983.
[59] 邴建平,邓鹏鑫,张冬冬,等. 三峡水库运行对鄱阳湖江湖水文情势的影响[J].人民长江,2020,51(3): 87-93.
[60] 李景保,尹 辉,卢承志,等.洞庭湖区的泥沙淤积效应[J]. 地理学报,2008,63(5): 487-496 .
[61] 童潜明. 洞庭湖的演化与生态[J]. 生态与环境,2003,6(1): 1-7.
[62] 卢金友,朱勇辉. 三峡水库下游江湖演变与治理若干问题探讨[J].raybet体育在线 院报,2014,31(2):98-107.
[63] 胡春宏,阮本清,张双虎,等. 长江与洞庭湖鄱阳湖关系演变及其调控[M]. 北京:科学出版社,2017.
[64] 李义天,邓金运,孙昭华,等. 泥沙淤积与洞庭湖调蓄量变化[J]. 水利学报,2000(12): 48-52.
[65] 李荣昉,吴敦银,刘 影,等. 鄱阳湖对长江洪水调蓄功能的分析[J]. 水文,2003(6): 12-17.
[66] 王 冬,李义天,邓金运,等. 三峡水库蓄水期洞庭湖水力要素变化初步分析[J]. 水力发电学报,2014,33(2): 26-32.
[67] 邓金运,范少英,庞灿楠,等. 三峡水库蓄水期长江中游湖泊调蓄能力变化[J]. raybet体育在线 院报,2018,35(5): 147-152.
[68] 黄 群,孙占东,赖锡军,等.1950s以来洞庭湖调蓄特征及变化[J]. 湖泊科学,2016,28(3): 676-681.
[69] 韩剑桥,孙昭华,黄 颖,等. 三峡水库蓄水后荆江沙质河段冲淤分布特征及成因[J]. 水利学报,2014,45(3): 277-285,295.
[70] 黄 群,孙占东,姜加虎. 三峡水库运行对洞庭湖水位影响分析[J]. 湖泊科学,2011,23(3): 424-428.
[71] 李景保,张照庆,欧朝敏,等. 三峡水库不同调度方式运行期洞庭湖区的水情响应[J]. 地理学报,2011,66(9): 1251-1260.
[72] 张振全,黎昔春,郑 颖. 洞庭湖对洪水的调蓄作用及变化规律研究[J]. 泥沙研究,2014(2): 68-74.
[73] 王 冬,方娟娟,李义天,等. 三峡水库调度方式对洞庭湖入流的影响研究[J].raybet体育在线 院报,2016,33(12): 10-16.
[74] 方春明,曹文洪,毛继新,等. 鄱阳湖与长江关系及三峡蓄水的影响[J]. 水利学报,2012,43(2): 175-181.
[75] 邴建平. 长江—鄱阳湖江湖关系演变趋势与调控效应研究[D].武汉:武汉大学,2018.
[76] 闵 骞,占腊生. 1952—2011年鄱阳湖枯水变化分析[J]. 湖泊科学,2012,24(5): 675-678.
[77] 李义天,郭小虎,唐金武,等. 三峡水库蓄水后荆江三口分流比估算[J]. 天津大学学报,2008(9):1027-1034.
[78] 郭小虎,韩向东,朱勇辉,等. 三峡水库的调蓄作用对荆江三口分流的影响[J].水电能源科学,2010(11): 48-51.
[79] 朱玲玲,许全喜,戴明龙. 荆江三口分流变化及三峡水库蓄水影响[J].水科学进展,2016,27(6):822-831.
[80] MEI X, DAI Z, DU J, et al. Linkage between Three Gorges Dam Impacts and the Dramatic Recessions in China’s Largest Freshwater Lake, Poyang Lake[J]. Scientific Reports, 2015, 5.doi:10.1038/srep18197.
[81] YE X, LI Y, LI X, et al. Factors Influencing Water Level Changes in China’s Largest Freshwater Lake, Poyang Lake, in the Past 50 Years[J]. Water International, 2014, 39(7): 983-999.
[82] 周建军,张 曼. 长江鄱阳湖问题的原因及湖口建闸的影响[J]. 水资源保护,2019,35(2): 1-12.
PDF(8413 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map