Discussion on the Coverage Design of Submerged Vegetation in Shallow Lakes

LUO Xi, MA Jun-chao

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (3) : 20-24.

PDF(1079 KB)
PDF(1079 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (3) : 20-24. DOI: 10.11988/ckyyb.202000392021
WATER RESOURCES AND ENVIRONMENT

Discussion on the Coverage Design of Submerged Vegetation in Shallow Lakes

  • LUO Xi, MA Jun-chao
Author information +
History +

Abstract

Submerged plant is a key factor maintaining the clear water state of shallow lakes. The coverage of submerged plant is an important parameter of plant measures in water ecological restoration projects. By collecting the changes of submerged plants in natural shallow lakes and analyzing the research results of scholars on projects in China and abroad, we conclude that the coverage of submerged plants in shallow lakes can be ranging from 50% to 70% in design. For lakes with small pollution load, a low value of coverage of submerged plant can be taken; for ponds, the value can be at about 30%; when the concentration of nutrients exceeds threshold, the coverage should be at a high value. According to engineering experience, the higher the coverage, the better the water quality can be maintained given a constant pollution source. Besides, in view of the problems that affect the coverage of submerged plants, for example, sediment pollution, water transparency and seasonal changes, we put forward some suggestions in an attempt to provide experience and reference for the future work of submerged plant restoration in shallow lakes.

Key words

shallow lake / submerged plant / coverage / value range / water quality

Cite this article

Download Citations
LUO Xi, MA Jun-chao. Discussion on the Coverage Design of Submerged Vegetation in Shallow Lakes[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(3): 20-24 https://doi.org/10.11988/ckyyb.202000392021

References

[1] 吴振斌,邱东茹,贺 锋,等. 水生植物对富营养水体水质净化作用研究[J]. 武汉植物学研究,2001,19(4):299-303.
[2] 赵 磊,刘 永,李玉照,等. 湖泊生态系统稳态转换理论与驱动因子研究进展[J]. 生态环境学报,2014,23(10):1697-1707.
[3] 吴振斌,邱东茹,贺 锋,等. 沉水植物重建对富营养水体氮磷营养水平的影响[J]. 应用生态学报,2003,14(8):1351-1353.
[4] 陈 登,蔡启佳,田翠翠,等. 3种沉水植物根际对沉积物中典型氮循环微生物功能基因丰度的影响[J]. 云南农业大学学报(自然科学),2018,33(2):314-323.
[5] 董 悦,霍姮翠,谢文博,等. 上海后滩湿地沉水植物群落系统对底泥的生态修复效应[J]. 安全与环境学报,2013,13(2):147-153.
[6] 童昌华,杨肖娥,濮培民,等. 水生植物控制湖泊底泥营养盐释放的效果和机理[J]. 农业环境科学学报,2003,22(6):673-676.
[7] 蔡景波,丁学锋,彭红云,等. 环境因子及沉水植物对底泥磷释放的影响研究[J]. 水土保持学报,2007,38(2):151-154.
[8] 钟爱文,宋 鑫,张 静,等. 2014年武汉东湖水生植物多样性及其分布特征[J]. 环境科学研究,2017,30(3):398-405.
[9] 陶 花,潘继征,沈耀良,等. 滆湖沉水植物概况及退化原因分析[J]. 环境科技,2010,23(5):64-68.
[10] 吴晓东,潘继征,李文朝,等. 滆湖东岸生态修复试验区的水质净化效果[J]. 生态与农村环境学,2013,29(3):284-289.
[11] LAURIDSEN T L, LODGE D M. Avoidance by Daphnia magna of Fish and Macrophytes: Chemical Cues and Predator-mediated Use of Macrophyte Habitat[J]. Limnology and Oceanography, 1996, 41(4): 794-798.
[12] SCHEFFER M, CARPENTER S R. Catastrophic Regime Shifts in Ecosystems: Linking Theory to Observation[J]. Trends in Ecology and Evolution, 2003, 18(12): 648-656.
[13] PERETYATKO A, TEISSER S, DE BACKER S, et al. Restoration Potential of Biomanipulation for Eutrophic Peri-urban Ponds: The Role of Zooplankton Size and Submerged Macrophyte Cover[J]. Hydrobiologia, 2009, 634: 125-135.
[14] DE BACKER S, TEISSER S. Stabilizing the Clear-water State in Eutrophic Ponds after Biomanipulation: Submerged Vegetation versus Fish Recolonization[J]. Hydrobiologia, 2012, 689(1): 161-176.
[15] DE BACKER S, TEISSER S. Identification of Total Phosphate, Submerged Vegetation Cover and Zooplankton Size Thresholds for Success of Biomanipulation in Peri-urban Eutrophic ponds[J]. Hydrobiologia, 2014, 737:281-296.
[16] 刘从玉,刘平平,刘正文,等. 沉水植物在生态修复和水质改善中的作用:以惠州南湖生态系统的修复与构建(中试)工程为例[J]. 安徽农业科学,2008,36(7):2908-2910.
[17] 刘玉超,于谨磊,陈 亮,等.浅水富营养化湖泊生态修复过程中大型沉水植物群落结构变化以及对水质影响[J]. 生态科学,2008,27(5):376-379.
[18] 陈开宁,包先明,史龙新,等. 太湖五里湖生态重建示范工程:大型围隔试验[J].湖泊科学,2006,18(2):139-149.
[19] 姜 霞,王书航,杨小飞,等. 蠡湖水环境综合整治工程实施前后水质及水生态差异[J]. 环境科学研究,2014,26(6):595-601.
[20] 高 亚,潘继征,李 勇,等. 江苏滆湖北部区整治后浮游植物时空分布及环境因子变化规律[J]. 湖泊科学,2015,27(4):649-656.
[21] 陈 静,和丽萍,赵祥华,等. 滇池草海东风坝水域生态修复技术工程应用[J]. 四川环境,2007,26(3):630-634.
[22] 王 琦,高晓奇,杨红军,等. 滇池沉水植物分布区域水环境现状与健康评价[J]. 生态环境学报,2017,26(8):1392-1402.
[23] 徐后涛,赵风斌,张 玮,等. 城市人工湖的生态治理[J]. 生态环境学报,2015,9(9):4300-4308.
[24] 吴振斌,等. 水生植物与水体生态修复[M]. 北京:科学出版社,2011.
[25] 曹 昀,胡 红,时 强,等. 沉水植物恢复的透明度条件研究[J]. 安徽农业科学,2012,40(3):1710-1711.
[26] HAVENS K E. Submerged Aquatic Vegetation Correlations with Depth and Light Attenuating Materials in a Shallow Subtropical Lake[J]. Hydrobiologia, 2003, 493(1/2/3): 173-186.
[27] 史 静,于秀芳,夏运生,等. 影响富营养化湖泊底泥氮、磷释放的因素[J]. 水土保持通报,2016,36(3):241-244.
[28] 潘慧云,徐小花,高士祥. 沉水植物衰亡过程中营养盐的释放过程及规律[J]. 环境科学研究,2008,21(1):64-68.
[29] 张来甲,叶 春,李春华,等.沉水植物腐解对水体水质的影响[J]. 环境科学研究,2013,26(2):145-151.
PDF(1079 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map