Mechanism of Dispersion Methods Affecting the Dispersity ofGuiyang Red Clay

PU Quan, WU Dao-yong, ZUO Shuang-ying, ZHANG Yan-zhao, YANG Chong

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (8) : 126-130.

PDF(3980 KB)
PDF(3980 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (8) : 126-130. DOI: 10.11988/ckyyb.20190307
ROCK-SOIL ENGINEERING

Mechanism of Dispersion Methods Affecting the Dispersity ofGuiyang Red Clay

  • PU Quan1, WU Dao-yong2, ZUO Shuang-ying1, ZHANG Yan-zhao1, YANG Chong1
Author information +
History +

Abstract

The dispersion status of Guiyang red clay in different media environment was accurately tested in the present research. In the light of the effect of Guiyang red clay’s special microstructure on particle size distribution, particle size analysis test was carried out using mechanical grinding method, ultrasonic method, and chemical dispersion method, respectively, to study the particle size distribution law. Results unveil that the dispersion of soil particles treated with chemical reagent is better than that with mechanical grinding or ultrasonic wave. Five types of chemical reagents were further used for particle dispersion, among which sodium hexametaphosphate ((NaPO3)6), as a strongly alkaline and weakly acid salt, has the optimum dispersion effect. Moreover, concentration, temperature, and test dose were selected as influential factors to obtain the most favorable dispersion conditions for Guiyang red clay: (NaPO3)6 solution with a concentration of 2% and dose of 10-15 mL at a temperature around 40 ℃. On such basis, the dispersion mechanism of Guiyang red clay was expounded: cemented agglomerations, a particular spatial structure, were formed among the micro-structural cells of Guiyang red clay via free iron oxide. Free iron oxide is of strong activity and is prone to be hydrated under varying environment, thus affecting the fastness of cemented agglomerations, and therefore is a key factor leading to different dispersion effects.

Key words

Guiyang red clay / particle size distribution / microstructure / chemical dispersion / free iron oxide

Cite this article

Download Citations
PU Quan, WU Dao-yong, ZUO Shuang-ying, ZHANG Yan-zhao, YANG Chong. Mechanism of Dispersion Methods Affecting the Dispersity ofGuiyang Red Clay[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(8): 126-130 https://doi.org/10.11988/ckyyb.20190307

References

[1] 廖义玲,毕庆涛,席先武,等.关于红黏土先期固结压力的探讨[J].岩土力学,2006,27(11):1931-1934.
[2] 赵 蕊,左双英,孙志强.贵阳红黏土的应力-应变软化模型及参数研究[J].地下空间与工程学报,2018,14(5):1258-1265.
[3] 张彦召,左双英,李雨霏.贵阳红黏土介-微观结构对力学特性影响试验研究[J].水利水电技术,2019,50(1):36-42.
[4] 汪发武.地震诱发的高速远程滑坡过程中土结构破坏和土粒子破碎引起的两种不同的液化机理[J].工程地质学报,2019,27(1):98-107
[5] TURGUT A, ISIK N S, KASAPOGLU K E. Investigation of Factors Affecting the Dispersibility of Clays and Estimation of Dispersivity[J]. Bulletin of Engineering Geology and the Environment, 2017, 76: 1051-1073.
[6] 樊恒辉,赵高文,路立娜,等.分散性土的综合判别准则与针孔试验方法的改进[J].水力发电学报,2013,32(1):248-253,262.
[7] 马 琳. 游离氧化铁对花岗岩残积红土强度增长的试验及本构模型研究[D].长春:吉林大学,2007.
[8] 樊恒辉,赵高文,李洪良.分散性黏土研究现状与展望[J].岩土力学,2010,31(增刊1):108-114.
[9] MC ELROY C. Using Hydrated Lime to Control Erosion of Dispersive Clays[C]∥Lime for Environmental Uses. ASTM Committee. West Conshohocken, PA: ASTM International. Los Angeles, CA, June 25, 1988: 100-114.
[10]赵高文,樊恒辉,陈 华,等.基于黏性土分散机制的分散性土化学改性研究[J].岩土力学,2013,34(增刊2):210-213
[11]YANG Li-hui,ZHENG Xiang-min.Effect of Hydrochloric Acid on Grain Size Analysis of the Quaternary Red Clay Rich in Tiny Ferromanganese Nodules,Jiangxi Province,Southern China[J].Arabian Journal of Geosciences,2017,10:332.
[12]高明霞,李 鹏,王国栋,等.南坪水库筑坝土料分散机理及原因分析[J].岩土工程学报,2009,31(8):1303-1308.
[13]高 彬,陈 筠,杨 恒,等.红黏土在不同应力路径下的力学特性试验研究[J].地下空间与工程学报,2018,14(5):1202-1212.
[14]张先伟,孔令伟.氧化铁胶体与黏土矿物的交互作用及其对黏土土性影响[J].岩土工程学报,2014,36(1):65-74.
[15]牛 庚,孙德安,韦昌富,等.游离氧化铁对红黏土持水特性的影响[J].岩土工程学报,2018,40(12):2318-2324.
PDF(3980 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map