Application of Improved Combinatorial Forecasting Model to Railway Tunnel Deformation Prediction

LI Qiu-quan

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (11) : 63-68.

PDF(5315 KB)
PDF(5315 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (11) : 63-68. DOI: 10.11988/ckyyb.20170446
ENGINEERING SAFETY AND DISASTER PREVENTION

Application of Improved Combinatorial Forecasting Model to Railway Tunnel Deformation Prediction

  • LI Qiu-quan
Author information +
History +

Abstract

The stability of surrounding rock of tunnel can be effectively identified by deformation prediction, which is a crucial basis for informatized tunnel construction. An improved prediction method combining local weights and global weights is proposed to improve traditional methods. The proposed method is simple, practical, and also reflects the impacts of sample data and node length on combinatorial weights. Meanwhile, ideas of cumulative superposition and multiplicative superposition are put forward in consideration of the influences of local and global factors on the combinatorial weights. Engineering case study verifies that the proposed combinatorial forecasting model is of higher prediction accuracy than traditional forecasting model, with the relative error less than 2%; in addition, multiplicative superposition is of better effect, higher accuracy and stability than cumulative superposition.

Key words

railway tunnel / local weight / global weight / combinatorial forecasting / deformation prediction

Cite this article

Download Citations
LI Qiu-quan. Application of Improved Combinatorial Forecasting Model to Railway Tunnel Deformation Prediction[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(11): 63-68 https://doi.org/10.11988/ckyyb.20170446

References

[1] 徐昌茂, 吴立, 吴双兰,等. 超大断面高速铁路隧道围岩变形预测分析[J]. 现代隧道技术, 2013, 50(6):80-84.
[2] 黄鸿健. 堡镇隧道高地应力软弱围岩段施工大变形数值模拟预测研究[J]. 铁道标准设计, 2009,(3):93-95.
[3] 孙钧, 潘晓明, 王勇. 隧道围岩挤入型流变大变形预测及其工程应用研究[J]. 河南大学学报(自然版), 2012, 42(5):646-653.
[4] 吴涛, 彭立敏, 施成华,等. 高速铁路隧道线下工程变形监测系统的开发与应用[J]. 铁道标准设计, 2009,(1):69-72.
[5] 彭仪普, 张盼, 薛一奇. 高速铁路隧道沉降变形分析方法的研究[J]. 铁道科学与工程学报, 2016, 13(10):1879-1885.
[6] 曹文贵, 印鹏, 贺敏,等. 基于数据新旧程度和预测取值区间调整的沉降组合预测方法[J]. 岩土力学, 2017,38(2):534-540.
[7] 曹文贵, 印鹏, 贺敏,等. 考虑实测数据新旧程度的工后沉降单项模型预测方法[J]. 水文地质工程地质, 2015, 42(6):65-70.
[8] 殷春武. 组合预测中新旧历史数据对组合权重影响仿真分析[J]. 科学技术与工程, 2012, 12(27):6960-6962.
[9] 马永驰, 刘志斌. 基于新鲜度函数的油气产量组合预测方法[J]. 石油学报, 2005, 26(1):87-90.
[10] 林大炜, 林从谋, 黄逸群,等. 小净距2扩4隧道变形规律的BP小波神经预测[J]. 华侨大学学报(自然科学版), 2014, 35(2):207-211.
[11] 胡纪元, 鸿雁, 周吕,等. 基于小波神经网络的隧道变形预测模型研究[J]. 公路工程, 2014,(4):26-29.
[12] 周奇才, 范思遐, 赵炯,等. 基于改进的支持向量机隧道变形预测模型[J]. 铁道工程学报, 2015, 32(3):67-72.
[13] 朱彬, 王明明. 偏压荷载下地铁隧道变形特征及预测研究[J]. 西安科技大学学报, 2015,(4):458-466.
[14] 王树栋, 刘开云. 长大隧道软弱围岩施工大变形智能预测方法[J]. 中国铁道科学, 2008, 29(2):82-87.
[15] 肖本职, 罗超文, 刘元坤. 鄂西地应力测量与隧道岩爆预测分析[J]. 岩石力学与工程学报, 2005, 24(24):4472-4477.
PDF(5315 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map