Numerical Simulation of Sliding Failure in Rock-Bolt Interface by Discrete Element Model

FANG Wei, SIMA Jun, JIANG Ming-jing

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (5) : 73-78.

PDF(3704 KB)
PDF(3704 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (5) : 73-78. DOI: 10.11988/ckyyb.20161311
ROCK-SOIL ENGINEERING

Numerical Simulation of Sliding Failure in Rock-Bolt Interface by Discrete Element Model

  • FANG Wei1,2, SIMA Jun1, JIANG Ming-jing1,3
Author information +
History +

Abstract

Researching the mechanical properties and failure mechanism of rock-bolt interface is of great significance since sliding between bolt and rock is a major failure form of anchorage system. With the microscopic bond
model proposed by one of the authors previously, the pull-out test of rock bolts was simulated using discrete element method (DEM). The complete load-displacement curves, the distribution of axial force and the interfacial shear stress were investigated, respectively. Furthermore, the microscopic failure mechanism of bolt-rock interface was analyzed according to the type and fabric of broken bonds. Research results are concluded as follows: 1) the simulated load-displacement curves were consistent with those from laboratory tests; 2) with the increase of anchor length, peak load value increased while average cohesive strength of anchor interface decreased; 3) progressive failure occurred in the anchor interface after pull load reached peak; 4) on macroscopic level, the failure of anchored segment exhibited as interface sliding; whereas on microscopic level, the failure manifested as the tensile failure of bonds near interface and the propagation of micro-cracks along the direction of axial force.

Key words

rock bolt / pull-out test / anchor interface / sliding failure / discrete element simulation

Cite this article

Download Citations
FANG Wei, SIMA Jun, JIANG Ming-jing. Numerical Simulation of Sliding Failure in Rock-Bolt Interface by Discrete Element Model[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(5): 73-78 https://doi.org/10.11988/ckyyb.20161311

References

[1] 徐祯祥,闫莫明,苏自约.岩土锚固技术与西部开发[M].北京:人民交通出版社, 2002.
[2] 尤春安,战玉宝.预应力锚索锚固段界面滑移的细观力学分析[J].岩石力学与工程学报,2009,28(10):1976-1985.
[3] HOBST L, ZAJIC J. Anchoring in Rock and Soil [M]. New York: Elsevier Scientific Publishing Company, 1983.
[4] ELIGEHAUSEN R, LEHR B,MESZAROS J, et al. Behavior and Design of Anchorage with Bonded Anchors under Tension Load[C]∥Anchoring & Grouting—Proceedings of International Conference on Anchoring & Grouting Towards the New Century, Guangzhou, October 9, 1999. Guangzhou: Zhongshan University Publishing House, 1999:103-115.
[5] 张永兴,饶枭宇,唐树名,等.压花锚锚固性能的试验研究与数值分析[J].岩石力学与工程学报,2008,27(3):607-614.
[6] FARMER I W. Stress Distribution Along a Resin Grouted Rock Anchor[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1975, 12(11):347-351.
[7] 杨松林,荣 冠,朱焕春.混凝土中锚杆荷载传递机理的理论分析和现场实验[J].岩土力学,2001,22(1):71-74.
[8] 陈妙峰, 唐德高,周早生,等.锚杆锚固机理试验研究[J].建筑技术开发,2003,30(4):21-23.
[9] 张发明,陈祖煜,刘 宁.岩体与锚固体间粘结强度的确定[J]. 岩土力学,2001,22(4):470-473.
[10]朱焕春,荣 冠,肖 明,等.张拉荷载下全长黏结锚杆工作机理试验研究[J].岩石力学与工程学报,2002,21(3):379-384.
[11]ZHANG B R, BENMOKRANE B, CHENNOUF A. Prediction of Tensile Capacity of Bond Anchorages for FRP Tendons[J]. Journal of Composites for Construction, 2000, 4(2):39-47.
[12]江文武,徐国元,马长年.FLAC-3D的锚杆拉拔数值模拟试验[J].哈尔滨工业大学学报,2009,41(10):129-133.
[13]张 凯,杨 庆,蒋景彩,等.全长粘结岩石锚杆拉拔数值模拟[J].大连理工大学学报,2013,53(5):710-714.
[14]POTYONDY D O, CUNDALL P A. A Bonded-particle Model for Rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8):1329-1364.
[15]赵同彬,尹延春,谭云亮,等.锚杆界面力学试验及剪应力传递规律细观模拟分析[J].采矿与安全工程学报,2011,28(2): 220-224.
[16]张思峰.预应力内锚固段作用机理及其耐久性研究[D].上海:同济大学,2007.
[17]蒋明镜,方 威,司马军.模拟岩石的平行粘结模型微观参数标定[J].山东大学学报(工学版),2015,45(4):50-56.
[18]蒋明镜,陈 贺,刘 芳.岩石微观胶结模型及离散元数值仿真方法初探[J].岩石力学与工程学报,2013,32(1):15-23.
[19]JIANG M J, KONRAD J M, LEROUEIL S. An Efficient Technique for Generating Homogeneous Specimens for DEM Studies[J]. Computers and Geotechnics, 2003, 30(7): 579-597.
[20]JIANG M J, CHEN H, CROSTA G B. Numerical Modeling of Rock Mechanical Behavior and Fracture Propagation by a New Bond Contact Model[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 78:175-189.
[21]陈 贺.岩石宏微观力学特性及高陡研制边坡的离散元数值模拟[D].上海:同济大学,2013.
[22]MARTIN C D. The Strength of Massive Lac du Bonnet Granite Around Underground Openings[D]. Winnipeg, Canada: University of Manitoba, 1993.
[23]韩 军,陈 强,刘元坤,等.锚杆灌浆体与岩(土)体间的粘结强度[J].岩石力学与工程学报,2005,24(19):3482-3486.
[24]尤春安,高 明,张利民,等.锚固体应力分布的试验研究[J]. 岩土力学,2004,25(增刊):63-66.
PDF(3704 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map