Prediction of Annual Precipitation by Weighted Markov ChainBased on Membership Modification

MIAO Zheng-wei,XU Li-gang

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (1) : 40-46.

PDF(1366 KB)
PDF(1366 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (1) : 40-46. DOI: 10.11988/ckyyb.20160893
WATER RESOURCES AND ENVIRONMENT

Prediction of Annual Precipitation by Weighted Markov ChainBased on Membership Modification

  • MIAO Zheng-wei1,XU Li-gang2
Author information +
History +

Abstract

The annual precipitation series of Yulin city from 1951 to 2015 was divided into 9 states by the Fisher optimal partition method. The weighted Markov chain model was established by taking the standardized autocorrelation coefficients as weights. With the mean value of all precipitation in the same state as the cluster center, the membership function of the Fuzzy C-Means was applied to calculate the membership of annual precipitation, and the membership vector was taken as the initial state vector for the time period. The precipitation state from 2006 to 2015 in Yulin city was predicted year by year. All the results agree with the reality. Based on the prediction results of Markov Chain, the precipitation was predicted respectively from 2006 to 2015 by the level characteristics value of Fuzzy Sets, and the relative error of all the prediction results is less than 10%. The preliminary results show that the model of weighted Markov chain based on membership modification is feasible.

Key words

precipitation prediction / membership / weighted Markov chain / fuzzy sets / Yulin

Cite this article

Download Citations
MIAO Zheng-wei,XU Li-gang. Prediction of Annual Precipitation by Weighted Markov ChainBased on Membership Modification[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(1): 40-46 https://doi.org/10.11988/ckyyb.20160893

References

[1] 黄 华,蔡 仁,穆振侠,等.基于模糊集修正加权马尔可夫模型在新疆降水预测中的应用[J].新疆农业科学,2015,52(10):1891-1898.
[2] 李 俊,毕华兴,李笑吟,等.有序聚类法在土壤水分垂直分层中的应用[J].北京林业大学学报,2007,29(1):98-101.
[3] 武琳琳.基于Fisher最优分割法的聚类分析应用[D].郑州:郑州大学,2013:13-30.
[4] 温海彬.马尔可夫链预测模型及一些应用[D].南京:南京邮电大学,2012:7-31.
[5] 杨皓翔,梁 川,崔宁博.基于加权灰色-马尔可夫链模型的城市需水预测[J].raybet体育在线 院报,2015,32(7):15-21.
[6] 万 臣,李建峰,赵 勇,等.基于新维BP神经网络-马尔科夫链模型的大坝沉降预测[J].raybet体育在线 院报,2015,32(10):23-27.
[7] 何嘉婧,王晋东,于智勇.基于模糊C-均值的改进人工蜂群聚类算法[J].计算机应用研究,2016,33(5):1342-1345.
[8] 李培强,李欣然,陈辉华,等.基于模糊聚类的电力负荷特性的分类与综合[J].中国电机工程学报,2005,25(24):73-78.
[9] 李 中,苑津莎.不同相似度测量方式的模糊C均值聚类分析[J].计算机工程与应用,2011,47(18):17-18.
[10]孙才志,林学钰.降水预测的模糊权马尔可夫模型及应用[J].系统工程学报,2003,18(4):294-299.
[11]王 涛,钱 会,李培月.加权马尔可夫链在银川地区降雨量预测中的应用[J].南水北调与水利科技,2010,8(1):78-81.
[12]王化齐,张茂省,党学亚.榆林地区降水蒸发时间序列的多尺度特征和突变分析[J].水电能源科学,2010,28(9):1-4.
[13]姚美娟,陈建平,王 翔,等.基于最优分割分级法的月球撞击坑分级及其演化分析[J].岩石学报,2016,32(1):119-126.
PDF(1366 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map