Application of Multi-stage Progressive Model to Predicting Foundation Pit Deformation

ZHOU Yong-sheng

Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (8) : 47-51.

PDF(1795 KB)
PDF(1795 KB)
Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (8) : 47-51. DOI: 10.11988/ckyyb.20160449
ENGINEERING SAFETY AND DISASTER PREVENTION

Application of Multi-stage Progressive Model to Predicting Foundation Pit Deformation

  • ZHOU Yong-sheng
Author information +
History +

Abstract

The aim of this research is to improve the precision of pit deformation prediction and enhance the stability of prediction results. Support vector machine, BP neural network and GM (1,1) are used as the basis of prediction model, and the corresponding first-order prediction models with parameters optimized are established. On this basis, the second-order combinatorial forecasting model of multiple fixed weight and non-fixed weight is established. In subsequence, on the basis of the Markov chain theory, the error correction model of three steps is established, and the progressive prediction of foundation pit deformation is realized. Results demonstrate that the prediction accuracy and stability are greatly improved by the progressive prediction of multiple stages, which verifies the validity and feasibility of the proposed method in this paper. The result is expected to provide a new idea for the prediction of foundation pit deformation.

Key words

foundation pit / progressive prediction model / support vector machines / BP neural network / GM(1 / 1) / combinatorial forecasting / error correction

Cite this article

Download Citations
ZHOU Yong-sheng. Application of Multi-stage Progressive Model to Predicting Foundation Pit Deformation[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(8): 47-51 https://doi.org/10.11988/ckyyb.20160449

References

[1] 杨爱婷,高正夏,卞志兵,等. 基于时间序列ACO-BP神经网络在基坑变形预测中的应用研究[J]. 路基工程,2015,(2):58-62.
[2] 曹 净,丁文云,赵党书,等. 基于LSSVM-ARMA模型的基坑变形时间序列预测[J]. 岩土力学,2014,35(增2):579-586.
[3] 李 莉,陈鹏宇,段新胜. 基坑变形预测的灰色二次优化模型[J]. 辽宁工程技术大学学报(自然科学版),2010,29(5):926-929.
[4] 石星照,顾胜宇. 基于灰关联定权组合模型的基坑变形预测分析[J]. 工程质量,2016,34(1):38-44.
[5] 钱大林,张志伟,靳璐岩. 基于神经网络的组合模型在基坑沉降预测中的应用研究[J]. 现代测绘,2014, 37(5):8-11.
[6] 任丽芳,袁宝远,王 江. 应用灰色神经网络组合模型预测深基坑变形[J]. 路基工程,2007(5):22-24.
[7] 杨 青,吉文来,石星照,等. 基于蚁群-BP神经网络的基坑变形预测[J]. 现代测绘,2012,35(6):13-14+27.
[8] 刘文生,吴作启,崔铁军,等. 基于改进灰色系统的深基坑变形预测方法研究[J]. 中国安全生产科学技术,2014,10(11):21-26.
[9] 刘淑官,黄声享,徐北海,等. 基于无偏灰色马尔科夫链的基坑沉降预测研究[J]. 测绘地理信息,2015, 40(4):10-13.
[10] 黄传胜,张家生. 深基坑开挖变形的灰色马尔科夫链预测方法[J]. 铁道科学与工程学报,2011, 8(2):71-75.
PDF(1795 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map