PDF(1764 KB)
Background Field Construction of Cloud ParametersBased on Time-series Data Analysis
XIANG Da-xiang, LI Zhe,WEN Xiong-fei
Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (11) : 5-11.
PDF(1764 KB)
PDF(1764 KB)
Background Field Construction of Cloud ParametersBased on Time-series Data Analysis
In order to reduce the effect of inter-annual variations on cloud parameter, we computed the cloud parameter drought index with Inner Mongolia Autonomous Region as a case study. According to ground observation data, we selected appropriate characteristic value to calculate the background field data, and then modified the cloud parameter drought index. Results revealed that modified through background field data, the risk level of desert in middle and west Inner Mongolia and farmland in southeast Inner Mongolia reduced in 2006 and 2007, and the area of high risk level decreased apparently. In 2008, the high risk level in the north part of west Inner Mongolia and the southeast Inner Mongolia reduced as well, so did the high risk area. According to the monitoring results in every February from 2009-2011, we can conclude that the spatial distribution of monitoring results obtained by the present method are of good continuity, and the risk levels are closer to the real situation.
cloud parameters method / remote sensing monitoring / time-series data / drought index / background field / modified function
[1] 郭 虎, 王 瑛, 王 芳. 旱灾灾情监测中的遥感应用综述. 遥感科学与应用, 2008, 23(1):111-116.
[2]高 磊, 覃志豪, 卢丽萍. 基于植被指数和地表温度特征空间的农业干旱监测模型研究综述. 国土资源遥感, 2007, (3):1-7.
[3]路京选, 曲 伟, 付俊娥. 国内外干旱遥感监测技术发展动态综述. 中国水利水电科学研究院学报, 2009, 7(2):105-111.
[4]PARK S, FEDDEMA J J, EGBERT S L. Impacts of Hydrologic Soil Properties on Drought Detection with MODIS Thermal Data. Remote Sensing Environment, 2004, 89(1): 53-62.
[5]向大享. 云参数法干旱遥感监测模型研究. 武汉:武汉大学, 2011.
[6]李 晶. 内蒙古自治区干旱灾害时空分布规律及预测研究. 呼和浩特:内蒙古农业大学, 2010.
[7]刘良明,向大享,文雄飞,等. 云参数法干旱遥感监测模型的完善. 武汉大学学报(信息科学版),2009, 34(2):207-209.
[8]LIU L M, XIANG D X, ZHOU Z, et al. Analyses the Modification Functions of the Drought Monitoring Model based on the Cloud Parameters Method∥The 2008 International Congress on Image and Signal Processing. CISP. 2008: 687-691. DOI: 10.1109/CISP.2008.431.
[9]陈海山, 朱伟军, 邓自旺, 等. 江苏冬季气温的年代际变化及其背景场分析. 南京气象学院学报, 2004, 27(4):433-442.
[10]National Oceanic and Atmospheric Administration. NWS, National Weather Service. (2015-01-01). http:∥www.cpc.ncep. noaa.gov /cgi-bin /gl_Soil-Moisture-Monthly.sh#.
[11]秦大河. 干旱. 北京:气象出版社, 2003:239-267.
/
| 〈 |
|
〉 |