Prediction of Elastic Modulus of Concrete Based on Random Aggregate Model

YANG Hua, LI Zong-li, HUI Hong-yi

Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (2) : 100-105.

PDF(2230 KB)
PDF(2230 KB)
Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (2) : 100-105. DOI: 10.11988/ckyyb.20140583
HYDRAULIC STRUCTURE AND MATERIAL

Prediction of Elastic Modulus of Concrete Based on Random Aggregate Model

  • YANG Hua, LI Zong-li, HUI Hong-yi
Author information +
History +

Abstract

In the assumption at mesoscopic level, concrete materials are assumed as three-phase composites consisting of aggregate, mortar and the bonding interface between mortar and aggregate. In order to determine elastic modulus of concrete (EMC), on the basis of the assumption, we establish a random aggregate model in the two-dimensional plane with Monte Carlo method and Walraven formula. Meanwhile, we predict EMC by using finite element method and compare the numerical calculated results with test results to verify the effectiveness of this mesoscopic finite element model. Furthermore, we discussthe impacts of several parameters (elastic modulus, aggregate’s volume content , aggregate’s maximum size, aggregate’s gradation , interface thickness and pores) of mesoscopic component on EMC. Test results show that 1) as for mesoscopic components of concrete, impact of elastic modulus of mortar on EMC is the biggest; 2) under given conditions, EMC with continuous gradation is bigger than that with uncontinuous gradation; 3) EMC decreases with the increasing of interface thickness and the existence of pores. The research results offer reference for the design of concrete’s mix proportion and optimization of its mechanical properties.

Key words

concrete / composite material / random aggregate model / elastic modulus / prediction

Cite this article

Download Citations
YANG Hua, LI Zong-li, HUI Hong-yi. Prediction of Elastic Modulus of Concrete Based on Random Aggregate Model[J]. Journal of Changjiang River Scientific Research Institute. 2016, 33(2): 100-105 https://doi.org/10.11988/ckyyb.20140583

References

[1] 张 研,张子明.材料细观力学[M].北京:科学出版社,2008.
[2] 杜善义,王 彪.复合材料细观力学[M].北京:科学出版社,1997.
[3] 何巨海,张子明,艾亿谋,等.基于细观力学的混凝土有效弹性性能预测[J].河海大学学报(自然科学版),2008,36(6):801-805.
[4] 李艳茹,姜海波.混凝土骨料含量对弹性模量的影响预测[J].四川建筑科学研究,2012,38(1):175-178.
[5] 应宗权,杜成斌.考虑界面影响的混凝土弹性模量的数值预测[J].工程力学,2008,25(8):92-96.
[6] 郑建军,吕建平,吴智敏.考虑不均匀界面时混凝土弹性模量预测[J].复合材料学报,2008,25(5):141-146.
[7] 郑建军,周欣竹,姜 璐.混凝土杨氏模量预测的三相复合球模型[J].复合材料学报,2005,22(1):102-107.
[8] 李朝红,徐光兴.混凝土弹性模量预测的混合夹杂模型[J].低温建筑技术,2013,(6):11-13.
[9] 杜修力,金 浏.含孔隙混凝土复合材料有效力学性能研究[J].工程力学,2012,29(6):70-77.
[10]杜修力,金 浏.饱和混凝土有效弹性模量及有效抗拉强度研究[J].水利学报,2012,43(6):667-674.
[11]WALRAVEN J C,REINHARDT H W. Theory and Experiments on the Mechanical Behavior of Cracks in Plain and Reinforced Concrete Subject to Shear Loading[J].Heron,1981,26(1A):26-35.
[12]STOCK A F, HANNANT D J, WILLIAMS R I T. The Effect of Aggregate Concentration upon the Strength and Modulus of Elasticity of Concrete[J]. Magazine of Concrete Research, 1979, 31(109):225-234.
[13]LI G Q, ZHAO Y, PANG S S. Four-phase Sphere Modeling of Effective Bulk Modulus of Concrete[J]. Cement and Concrete Research, 1999,29(6):839-845.
[14]王宗敏.不均质材料(混凝土)裂隙扩展及宏观计算强度与变形[D].北京:清华大学,1996.
[15]ZHENG Jian-jun, ZHOU Xin-zhu. Prediction of the Chloride Diffusion Coefficient of Concrete[J]. Materials and Structures, 2007,40(7):693-701.
PDF(2230 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map