Protective Effects of Different Shapes of Ecological Rip-rap Bags Based on CFD-DPM Model

SUN Hong-guang, HONG Liang-zhen, WANG Mao-mei, WANG Lian

Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (4) : 19-26.

PDF(13972 KB)
PDF(13972 KB)
Journal of Changjiang River Scientific Research Institute ›› 2025, Vol. 42 ›› Issue (4) : 19-26. DOI: 10.11988/ckyyb.20240532
River-Lake Protection and Regulation

Protective Effects of Different Shapes of Ecological Rip-rap Bags Based on CFD-DPM Model

Author information +
History +

Abstract

Curved slopes in natural river channels are highly susceptible to erosion, posing a significant challenge for river management. To address this issue, a comparative study was conducted on the protective effects of sand-and-gravel rip-rap bags of different shapes against erosion based on the concept of ecological slope protection. First, a geometric model of the curved-channel bed was constructed according to the actual river structure. Then, the CFD-DPM method was employed to analyze the bank-protection effects of rectangular, hemispherical, and semi-cylindrical bags placed on the concave bank of the curved channel. Results revealed that under a flow velocity of 0.5 m/s, among the three shapes of protection bags, rectangular bags bring about the least pressure on the concave bank, while semi-cylindrical bags obstruct the largest amount of sediment particles, leading to the smallest Reynolds number of particles and the minimum average particle velocity, 9% lower than that in the model without protection bags. In conclusion, rectangular rip-raping bags offers better protection for the adjacent concave bank, while semi-cylindrical bags provide the most effective sand-blocking function.

Key words

river bend slope protection / ecological protection / sand and gravel rip-rap bag / geometric modeling of curved riverbed / CFD-DPM method / protection effect

Cite this article

Download Citations
SUN Hong-guang , HONG Liang-zhen , WANG Mao-mei , et al. Protective Effects of Different Shapes of Ecological Rip-rap Bags Based on CFD-DPM Model[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(4): 19-26 https://doi.org/10.11988/ckyyb.20240532

References

[1]
刘梦齐. 长江中下游航道护岸水生植被修复技术[J]. 中国水运, 2023, 52(4):87-90.
(LIU Meng-qi. Restoration Technology of Aquatic Vegetation on Revetment in the Middle and Lower Reaches of Yangtze River Channel[J]. China Water Transport, 2023, 52(4):87-90.) (in Chinese)
[2]
姚仕明, 卢金友. 抛石护岸工程试验研究[J]. raybet体育在线 院报, 2006, 23(1):16-19.
Abstract
抛石护岸历史悠久,在长江中下游及国内外各大河 流中应用较为普遍。通过对块石与小颗粒石料的不同铺护方案及块石定点投抛的试验研究, 结果表明,抛石是较为理想的护岸材料,能很好地适应河床变形,粒径越小,其适应河床变 形的能力越强。抛石护岸工程效果与其粒径、覆盖率及石方量等有关。抛石在施工过程中, 在水深流速大的地方可做到在床面分布上相对比较均匀。
(YAO Shi-ming, LU Jin-you. Experimental Research on Riprap Bank Protection Engineering[J]. Journal of Yangtze River Scientific Research Institute, 2006, 23(1):16-19.) (in Chinese)
iprap protection of bank was applied in the middle and lower Yangtze River and many other rivers at home and abroad. The experiments on many riprap protection schemes of different diameters were carried out. The test results are summarized as follows: It could better adapt change of river bed. The less the diameter of block stone is, the stronger the ability adapting change of river bed is. Effect of riprap protection is related to the diameter, percentage of coverage and cubic meter quantity of block stones. During the process of revetment construction, it has a uniform distribution on bank slope at the place of high water depth and big velocity.
[3]
陈智贵, 陈小威, 龚浩, 等. 双频识别声纳技术在长江河段护岸抛石水下监测中的应用:以南京大胜关水下抛石为例[J]. 水利科技与经济, 2023, 29(11):7-10,39.
(CHEN Zhi-gui, CHEN Xiao-wei, GONG Hao, et al. Application of Dual Frequency Identification Sonar Technology in Underwater Monitoring of Riprap in the Yangtze River Embankment: A Case Study of Riprap in Dashengguan, Nanjing[J]. Water Science Technology and Economy, 2019, 29(11):7-10, 39.) (in Chinese)
[4]
潘庆燊. 长江中下游河道近50年变迁研究[J]. raybet体育在线 院报, 2001, 18(5):18-22.
Abstract
近50年来长江中下游河道演变分析表明,河道演变具有如下特点:河道总体河势基本稳定,局部河势变化较大;河道总体冲淤相对平衡,部分河段冲淤幅度较大;荆江和洞庭湖关系调整幅度加大;人为因素未改变河道演变基本规律;坐崩是长江中下游岸线崩退和护岸工程崩毁的主要形式;人为因素对长江口河道演变的影响增加。
(PAN Qing-shen. Changes in the Middle and Lower Reaches of the Yangtze River over the Past 50 Years[J]. Journal of Changjiang River Scientific Research Institute, 2001, 18(5):18-22.) (in Chinese)
[5]
渠庚, 陈栋, 姚仕明, 等. 长江中下游弯曲河道治理研究进展[J]. raybet体育在线 院报, 2024, 41(1):1-7.
(QU Geng, CHEN Dong, YAO Shi-ming, et al. Progress of River Management in the Middle and Lower Reaches of the Yangtze River[J]. Journal of Changjiang River Scientific Research Institute, 2024, 41(1):1-7.) (in Chinese)
[6]
李磊岩, 包增军, 何震洲. 洪潮双向水流作用下的急弯河段治理效果分析[J]. 水电能源科学, 2023, 41(10):141-144.
(LI Lei-yan, BAO Zeng-jun, HE Zhen-zhou. Analysis on the Treatment Effect of Sharp Bend Under the Action of Bidirectional Flood Flow[J]. Water Resources and Power, 2023, 41(10): 141-144.) (in Chinese)
[7]
PIYA B, ABDUL K B. Countermeasure of River Bend Scour Using a Combination of Submerged Vanes and Riprap[J]. International Journal of Sediment Research, 2018, 33(4):478-492.
[8]
PIYA B, ABDUL K B. Experimental Study on Scour at 90° Horizontal Forced Bend and Its Protection Using Riprap[J]. Aquatic Procedia, 2015, 4(c):797-804.
[9]
VAGHEFI M, SAFARPOOR Y, HASHEMI S S. Effects of Distance Between the T-shaped Spur Dikes on Flow and Scour Patterns in 90° Bend Using the SSIIM Model[J]. Ain Shams Engineering Journal, 2016, 7(1):31-45.
[10]
MAJID F, MASOUD G, SEYED A A S N. Scour and Flow Field Around a Spur Dike in a 90° Bend[J]. International Journal of Sediment Research, 2008, 23(1):56-68.
[11]
YAO Shi-ming, YUE Hong-yan, LI Li-gang. Analysis on Current Situation and Development Trend of Ecological Revetment Works in Middle and Lower Reaches of Yangtze River[J]. Procedia Engineering, 2012,28:307-313.
[12]
何广水, 姚仕明, 金中武. 长江荆江河段弯道凸岸边滩非典型冲刷研究[J]. 人民长江, 2011, 42(17):1-3,15.
(HE Guang-shui, YAO Shi-ming, JIN Zhong-wu. Research on Atypical Scour on the Convex Bank of the Bend in the Jingjiang Reach of the Yangtze River[J]. Yangtze River, 2011, 42(17):1-3, 15.) (in Chinese)
[13]
赵钢, 黄俊友, 王冬梅, 等. 混凝土铰链沉排护岸工程水下部分铺设质量检测技术研究与探讨[J]. raybet体育在线 院报, 2013, 30(6):31-34.
Abstract
近年来,国内在江河护岸工程实践过程中,创新优化出了预制混凝土铰链沉排护岸的新型结构形式,在多个护岸工程中得到成功应用并取得了良好的防洪护岸效果,但由于其水下排体尺寸较小,施工完成后水下部分的铺设情况很难被准确探测出来,也为水下部分的施工质量进行质量评定带来了困难。在对目前各种水下检测技术进行充分对比分析的基础上,提出超高分辨率多波束测深技术,并利用该技术成功地应用于长江武汉段铰链沉排护岸工程的水下部分施工铺设情况的勘测。实践证明该技术在定量检测预制混凝土铰链沉排工程水下铺设质量方面具有较大的优势,并可作为类似工程水下部分质量检测的技术手段。
(ZHAO Gang, HUANG Jun-you, WANG Dong- mei, et al. Research and Discussion on Laying Quality Inspection Technology of Underwater Part of Concrete Hinge Sinking Row Revetment Project[J]. Journal of Changjiang River Scientific Research Institute, 2013, 30(6):31-34.) (in Chinese)
[14]
许全喜. 三峡工程蓄水运用前后长江中下游干流河道冲淤规律研究[J]. 水力发电学报, 2013, 32(2):146-154.
(XU Quan-xi. Study on Scour and Deposition Regularity of the Middle and Lower Yangtze River Main Stream Before and After the Three Gorges Project[J]. Journal of Hydroelectric Engineering, 2013, 32(2):146-154.) (in Chinese)
[15]
季永兴, 刘水芹, 莫敖全. 长江口保滩护岸工程与水土资源可持续发展[J]. 水土保持学报, 2002, 16(1):128-131.
(JI Yong-xing, LIU Shui-qin, MO Ao-quan. Yangtze Estuary Protect Beach Revetment Engineering and Water and Soil Resource Sustainable Development[J]. Journal of Soil and Water Conservation, 2002, 16(1):128-131.) (in Chinese)
[16]
田正宏, 迟福海, 肖洋, 等. 长江南京段砂袋深水护岸施工技术[J]. 施工技术, 2013, 42(21):47-50.
(TIAN Zheng-hong, CHI Fu-hai, XIAO Yang, et al. Construction Technology of Sand Bag Deep Water Bank Protection in Nanjing Section of Yangtze River[J]. Construction Technology, 2013, 42(21):47-50.) (in Chinese)
[17]
周鸿, 鲁彬, 吴姚平. 沙枕抛投在荆江航道整治中的应用[J]. 水运工程, 2015, 28(8):35-37.
(ZHOU Hong, LU Bin, WU Yao-ping. Application of Sand Pillow Casting in Jingjiang Waterway Improvement[J]. Water Transport Engineering, 2015, 28(8): 35-37.) (in Chinese)
[18]
RASHID F, HOSSEIN A A, REHMAN U A M T, et al. Effects of Hooked Collar on the Local Scour Around a Lenticular Bridge Pier[J]. International Journal of Sediment Research, 2023, 38(1):1-11.
[19]
曾强. 河道治理工程中河道冲刷研究[J]. 水利技术监督, 2020, 28(2):197-199.
(ZENG Qiang. Study on River Erosion in River Treatment Project[J]. Water Conservancy Technical Supervision, 2020, 28(2):197-199.) (in Chinese)
[20]
钱若军, 董石麟, 袁行飞. 流固耦合理论研究进展[J]. 空间结构, 2008, 15(1):3-15.
(QIAN Ruo-jun, DONG Shi-lin, YUAN Xing-fei. Advances in Fluid Structure Coupling Theory[J]. Spatial Structure, 2008, 15(1):3-15.) (in Chinese)
[21]
陈庆光, 徐忠, 张永建. RNG κ-ε模式在工程湍流数值计算中的应用[J]. 力学季刊, 2003, 24(1):88-95.
(CHEN Qing-guang, XU Zhong, ZHANG Yong-jian. Application of RNG κ-ε Model to Numerical Calculation of Engineering Turbulence[J]. Chinese Quarterly of Mechanics, 2003, 24(1):88-95.) (in Chinese)
[22]
PETIT H A, PAULO C I, CABRERA O A, et al. Modelling and Optimization of an Inclined Plane Classifier Using CFD-DPM and the Taguchi Method[J]. Applied Mathematical Modelling, 2020, 77(1):617-634.
[23]
刘国庆. 基于DPM模型排沙漏斗水沙特性数值模拟研究[D]. 西安: 西安理工大学,2023.
(LIU Guo-qing. Research on Numerical Simulation of Water and Sediment Characteristics of Sediment Discharge Funnel Based on DPM Model[D]. Xi’an: Xi’an University of Technology, 2023.) (in Chinese)
[24]
GU Jin-rao, SHAO Ying-juan, LIU Xue-jiao, et al. Modelling of Particle Flow in a Dual Circulation Fluidized Bed by a Eulerian-Lagrangian Approach[J]. Chemical Engineering Science, 2018,68:619-633.
[25]
SHAO Ying-juan, GU Jin-rao, ZHONG Wen-qi, et al. Determination of Minimum Fluidization Velocity in Fluidized Bed at Elevated Pressures and Temperatures Using CFD Simulations[J]. Powder Technology, 2019,53:81-90.
[26]
王志鹏. 浅析河流弯道水流特点及冲刷深度[J]. 农业科技与信息, 2018, 35(23):123-124,128.
(WANG Zhi-peng. Analysis on Flow Characteristics and Erosion Depth of River Bends[J]. Agricultural Science and Information, 2018, 35(23):123-124, 128.) (in Chinese)
[27]
刘俊秀, 吉祖稳, 王党伟. 黏性细颗粒泥沙絮凝试验研究综述[J]. 泥沙研究, 2019, 44(2):63-68.
(LIU Jun-xiu, JI Zu-wen, WANG Dang-wei. Review on Flocculation Test of Viscous Fine Particles Sediment[J]. Journal of Sediment Research, 2019, 44(2):63-68. ( in Chinese))
PDF(13972 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map