PDF(2906 KB)
Influence of Low-temperature Inflow on the Transport of Supersaturated Total Dissolved Gas in Deep-Water Reservoir
ZHOU Zhe-cheng, SHI Hao-yang, GUO Hui, WANG Zhi-xin, LI Xi-nan, YANG Wen-jun, JIN Guang-qiu
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (9) : 35-43.
PDF(2906 KB)
PDF(2906 KB)
Influence of Low-temperature Inflow on the Transport of Supersaturated Total Dissolved Gas in Deep-Water Reservoir
The stratification of water temperature in deep-water cascade reservoirs reduces the inflow temperature of downstream reservoir, altering the supersaturation degree of total dissolved gas (TDG) in flow discharges. With the Xiluodu-Xiangjiaba cascade reservoirs as a case study, we investigated the impact of lower-temperature inflow on the longitudinal and vertical transport processes of supersaturated TDG in deep-water reservoir via field observation in association with numerical simulation. Finds reveal that: 1) a 2 ℃ decrease in inflow temperature advances the submersion position of TDG cloud by 36.4 km, shifts the peak TDG saturation down by 55 m, and reduces its vertical influence range by 23%. 2) With a 2 ℃ decrease in inflow temperature, as the TDG cloud with a saturation over 110% transports to front of the Xiangjiaba dam, the decay rate of enveloped area decreases by 16%; in subsequent transport stage, the decay rate reduces by 44%. 3) The average longitudinal transport velocity of supersaturated TDG from the jet flow zone to the interflow zone plunges by 92%. (4) As inflow temperature reduces by 2 ℃, the peak and mean TDG saturation of the outflow from Xiangjiaba’s surface orifices reduce by 3.2 and 4 times that of the outflow from power generating set, respectively. (5) The compensation effect of temperature reduction on the safe water depth threshold for fish can be quantified as 0.20 m/ ℃. The findings provide scientific support for ecological dispatching of deep-water reservoirs during flood seasons.
TDG transport process / mathematical model / reservoir water temperature stratification / total dissolved gas / cloud position / water temperature compensation / ecological dispatching / cascade deep-water reservoir
| [1] |
舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23(6): 1-14.
(
|
| [2] |
麻泽龙, 程根伟. 河流梯级开发对生态环境影响的研究进展[J]. 水科学进展, 2006, 17(5): 748-753.
(
|
| [3] |
|
| [4] |
|
| [5] |
谭德彩, 倪朝辉, 郑永华, 等. 高坝导致的河流气体过饱和及其对鱼类的影响[J]. 淡水渔业, 2006, 36(3): 56-59.
(
|
| [6] |
|
| [7] |
陈求稳, 张建云, 莫康乐, 等. 水电工程水生态环境效应评价方法与调控措施[J]. 水科学进展, 2020, 31(5): 793-810.
(
|
| [8] |
李然, 李克锋, 冯镜洁, 等. 水坝泄水气体过饱和对鱼类影响及减缓技术研究综述[J]. 工程科学与技术, 2023, 55(4): 91-101.
(
|
| [9] |
|
| [10] |
|
| [11] |
冯镜洁, 李然, 李克锋, 等. 高坝下游过饱和TDG释放过程研究[J]. 水力发电学报, 2010, 29(1): 7-12.
(
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
靖争, 张爵宏, 曹慧群, 等. 水库水温研究进展及趋势[J]. raybet体育在线
院报, 2023, 40(2): 52-59, 66.
(
|
| [16] |
张小峰, 姚志坚, 陆俊卿. 分层水库异重流试验[J]. 武汉大学学报(工学版), 2011, 44(4): 409-413.
(
|
| [17] |
|
| [18] |
任实, 张小峰, 陆俊卿. 温度分层水库中间层流运动影响因素分析[J]. 哈尔滨工程大学学报, 2015, 36(5): 648-652.
(
|
| [19] |
杜兰, 卢金龙, 李利, 等. 大型水利枢纽泄洪雾化原型观测研究[J]. raybet体育在线
院报, 2017, 34(8): 59-63.
(
|
| [20] |
吴时强, 吴修锋, 周辉, 等. 底流消能方式水电站泄洪雾化模型试验研究[J]. 水科学进展, 2008, 19(1): 84-88.
(
|
| [21] |
孟宝, 张继飞, 叶华, 等. 长江上游珍稀特有鱼类国家级自然保护区鱼类产卵场功能现状分析及保护启示[J]. 长江流域资源与环境, 2019, 28(11): 2772-2785.
(
|
| [22] |
朱玲玲, 董先勇, 陈泽方. 金沙江下游梯级水库淤积及其对三峡水库影响研究[J]. raybet体育在线
院报, 2017, 34(3): 1-7.
(
|
| [23] |
李婷, 唐磊, 王丽, 等. 水电开发对鱼类种群分布及生态类型变化的影响: 以溪洛渡至向家坝河段为例[J]. 生态学报, 2020, 40(4): 1473-1485.
(
|
| [24] |
李雨, 邹珊, 张国学, 等. 溪洛渡水库分层取水调度对下游河段水温结构的影响分析[J]. 水文, 2021, 41(3): 101-108.
(
|
| [25] |
程帅, 左新宇, 黄蕙, 等. 溪洛渡、向家坝库区及坝下水温分布特性及成因分析[J]. 水利水电快报, 2019, 40(8): 35-39.
(
|
| [26] |
曾晨军, 莫康乐, 关铁生, 等. 水库泄水总溶解气体过饱和对鱼类的危害[J]. 水利水运工程学报, 2020(6): 32-41.
(
|
| [27] |
谢奇珂, 刘昭伟, 陈永灿, 等. 溪洛渡水库水温日变化的测量与分析[J]. 水科学进展, 2018, 29(4): 523-536.
(
|
| [28] |
龙良红, 徐慧, 鲍正风, 等. 溪洛渡水库水温时空特性研究[J]. 水力发电学报, 2018, 37(4): 79-89.
(
|
| [29] |
|
| [30] |
U.S. Environmental Protection Agency. Quality Criteria for Water: EPA 440-9-76-023[S]. Washington, D.C.: U.S. Environmental Protection Agency, 1986.
|
| [31] |
Canadian Council of Ministers of the Environment. Canadian Water Quality Guidelines for the Protection of Aquatic Life: Dissolved Gas Supersaturation[M]. Winnipeg: Canadian Council of Ministers of the Environment, 1999.
|
| [32] |
王远铭, 张陵蕾, 曾超, 等. 总溶解气体过饱和胁迫下齐口裂腹鱼的耐受和回避特征[J]. 水利学报, 2015, 46(4): 480-488.
(
|
| [33] |
|
| [34] |
任实. 温度分层水库中密度流运动特性研究[D]. 武汉: 武汉大学, 2016.
(
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
付健. 水利枢纽下游水体溶解氧超饱和特性分析及预测[D]. 北京: 清华大学, 2009.
(
|
/
| 〈 |
|
〉 |