PDF(1255 KB)
A Method of Predicting Concrete Dam Deformation Based on BP-PCA-WCA-SVM
ZHU Xiao-wei, YUAN Zhan-liang, LI Hong-chao
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (9) : 138-145.
PDF(1255 KB)
PDF(1255 KB)
A Method of Predicting Concrete Dam Deformation Based on BP-PCA-WCA-SVM
Traditional single-model prediction methods suffer from issues like low accuracy, susceptibility to noise, and limited generalization capability. To address these challenges, we propose a novel approach for predicting concrete dam deformation by integrating the Beta Prior Principal Component Analysis (BP-PCA) and the Water Cycle Algorithm (WCA). Initially, the BP-PCA model decomposes deformation data into multiple scales, effectively reducing noise. This decomposition transforms the intricate nonlinear and non-stationary stochastic process into a set of principal components with simplified structures. Simultaneously, it enhances noise robustness by suppressing noise during the decomposition process. Subsequently, we employ the Water Cycle Algorithm optimized Support Vector Machine (WCA-SVM) to construct prediction models for each principal component. Finally, we integrate the prediction outcomes from multiple principal components to derive the final prediction result. The relative prediction error is minimized to 1.07%, with a root mean square error of 0.065. Compared to the three methods included in the comparative analysis, our approach yields over 62% improvement in prediction performance, demonstrating superior noise robustness and generalization capability.
concrete dam / deformation prediction / principal component analysis / water cycle algorithm / noise robustness
| [1] |
|
| [2] |
|
| [3] |
袁德宝, 张振超, 张军, 等. 最优化分数阶算子EGM(1,1)模型在变形监测预报中的应用[J]. 大地测量与地球动力学, 2020, 40(4): 331-334, 345.
(
|
| [4] |
杨玲, 魏静, 许子伏. 基于平滑先验法-麻雀搜索算法-支撑向量机回归模型的滑坡位移预测:以三峡库区八字门和白水河滑坡为例[J]. 地球科学与环境学报, 2022, 44(6): 1096-1110.
(
|
| [5] |
王利, 岳聪, 舒宝, 等. 基于混沌时间序列的黄土滑坡变形预测方法及应用[J]. 地球科学与环境学报, 2021, 43(5): 917-925.
(
|
| [6] |
臧妻斌, 黄腾. 时间序列分析在地铁变形监测中的应用[J]. 测绘科学, 2014, 39(7): 155-157.
(
|
| [7] |
石强, 戴吾蛟, 晏慧能, 等. 时空Kalman滤波在变形分析中的应用研究[J]. 测绘学报, 2022, 51(10): 2125-2138.
(
|
| [8] |
周春霖, 王有志, 徐刚年, 等. 基于优化非等时距权重傅里叶灰色模型的变形预测[J]. 人民长江, 2019, 50(1): 207-210.
(
|
| [9] |
|
| [10] |
|
| [11] |
刘晶磊, 张国朋, 张冲冲, 等. 基于误差分级迭代法的基坑变形预测[J]. 科学技术与工程, 2021, 21(14): 5822-5827.
(
|
| [12] |
牛景太. 基于奇异谱分析与PSO优化SVM的混凝土坝变形监控模型[J]. 水利水电科技进展, 2020, 40(6): 60-65, 77.
(
|
| [13] |
|
| [14] |
张健飞, 衡琰. 基于VMD-PE-CNN的混凝土坝变形预测模型[J]. 水利水电技术(中英文), 2022, 53(11): 100-109.
(
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
容静, 刘立龙, 康昊华, 等. 基于方差补偿自适应Kalman滤波的ARMA与PSO-SVM模型变形预测[J]. 大地测量与地球动力学, 2018, 38(7): 689-694.
(
|
/
| 〈 |
|
〉 |