Indoor Experimental Study on Remediation of Cadmium- Contaminated Red Clay by Immobilized Microbial Technology

CHEN Jun, HUANG Yang , XIANG Chuan , LONG Yu

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (6) : 106-113.

PDF(6444 KB)
PDF(6444 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (6) : 106-113. DOI: 10.11988/ckyyb.20230042
Rock-Soil Engineering

Indoor Experimental Study on Remediation of Cadmium- Contaminated Red Clay by Immobilized Microbial Technology

  • CHEN Jun1, HUANG Yang2 , XIANG Chuan3 , LONG Yu4
Author information +
History +

Abstract

To investigate the efficacy of immobilized microorganism technology in remediating cadmium (Cd) contamination in red clay and its impact on environmental pollution, we conducted a series of basic physical tests, unconfined compressive strength tests, toxic leaching tests, and heavy metal extraction tests. Activated carbon served as the carrier with Bacillus pasteuri as the strain. Results revealed Bacillus pasteuri’s robust cadmium ion tolerance. Compared to either microorganism or activated carbon alone, immobilized microorganism exhibited superior remediation efficacy. Unconfined compressive strength of soil containing 14% activated carbon and microorganisms reached 229.7 kPa, a 174.4% increase over cadmium-contaminated soil. Within 21 days, cadmium leaching concentration in soil containing 10% activated carbon and microorganisms decreased to 0.002 mg/L, down by 99.8% compared to Cd-contaminated soil samples. After remediation, cadmium in soil transitioned from a weak acid state to reducible and residual states. In summary, immobilized microorganism technology demonstrates effective remediation of cadmium-contaminated red clay, particularly at a 10% activated carbon concentration. These findings offer valuable insights for addressing cadmium pollution in red clay in Guizhou Province.

Key words

red clay / Bacillus pasteurii / immobilized microbial technology / Cd contamination / soil remediation / scanning electron microscope(SEM)

Cite this article

Download Citations
CHEN Jun, HUANG Yang , XIANG Chuan , LONG Yu. Indoor Experimental Study on Remediation of Cadmium- Contaminated Red Clay by Immobilized Microbial Technology[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(6): 106-113 https://doi.org/10.11988/ckyyb.20230042

References

[1] 文吉昌, 杨 杰, 姚海艳, 等. 贵州省土壤镉环境现状分布与特点及修复状况[J]. 环境保护与循环经济, 2017, 37(3): 51-55. (WEN Ji-chang, YANG Jie, YAO Hai-yan, et al. Distribution, Characteristics and Remediation of Soil Cadmium Environment in Guizhou Province[J]. Environmental Protection and Circular Economy, 2017, 37(3): 51-55.(in Chinese))
[2] 朱 平, 崔姗姗, 李占彬, 等. 大气降水对贵州喀斯特地区高背景值土壤镉的释放影响[J]. 生态环境学报, 2021, 30(11): 2213-2222. (ZHU Ping, CUI Shan-shan, LI Zhan-bin, et al. Influence of Atmospheric Precipitation on the Release of Cadmium from High Background Soils in Karst Areas of Guizhou[J]. Ecology and Environmental Sciences, 2021, 30(11): 2213-2222.(in Chinese))
[3] 廖义玲, 朱立军. 贵州碳酸盐岩红土[M]. 贵阳: 贵州人民出版社, 2004. (LIAO Yi-ling, ZHU Li-jun. Guizhou Carbonate Laterite[M]. Guiyang: Guizhou People’s Publishing House, 2004.(in Chinese))
[4] 王泓博,苟文贤,吴玉清,等.重金属污染土壤修复研究进展:原理与技术[J].生态学杂志,2021,40(8):2277-2288.(WANG Hong-bo, GOU Wen-xian, WU Yu-qing, et al. Progress in Remediation Technologies of Heavy Metals Contaminated Soil: Principles and Technologies[J]. Chinese Journal of Ecology, 2021, 40(8): 2277-2288.(in Chinese))
[5] YIN K, WANG Q, LÜ M, et al. Microorganism Remediation Strategies towards Heavy Metals[J]. Chemical Engineering Journal, 2019, 360: 1553-1563.
[6] 金建勇,孙玉焕.固定化微生物技术在重金属污染土壤修复中的研究进展[J].湖南生态科学学报,2021,8(2):90-96.(JIN Jian-yong,SUN Yu-huan.Research Progress of Immobilized Microorganism Technology in Remediation of Heavy Metal Contaminated Soil[J]. Journal of Hunan Ecological Science,2021,8(2):90-96.(in Chinese))
[7] CHOUDHURY S, CHATTERJEE A. Microbial Application in Remediation of Heavy Metals: An Overview[J]. Archives of Microbiology, 2022, 204(5): 268.
[8] 覃佳名, 姜必广, 南小龙, 等. 重金属污染土壤微生物修复研究进展[J]. 环境科学与技术, 2021, 44(增刊2): 132-143. (QIN Jia-ming, JIANG Bi-guang, NAN Xiao-long, et al. Research Progress on Microbial Remediation of Heavy Metal Contaminated Soil[J]. Environmental Science & Technology, 2021, 44(Supp.2): 132-143.(in Chinese))
[9] 刘 鹏, 邵光辉, 黄容聘. 微生物水泥固化处理黄金尾矿的试验研究[J]. 中国矿业大学学报, 2020, 49(4): 654-660. (LIU Peng, SHAO Guang-hui, HUANG Rong-pin. Experimental Study of Gold Tailings Stabilized by Microbe Cement[J]. Journal of China University of Mining & Technology, 2020, 49(4): 654-660.(in Chinese))
[10] 邓 敏, 程 蓉, 舒荣波, 等. 攀西矿区典型重金属污染土壤化学-微生物联合修复技术探索[J]. 矿产综合利用, 2021(4): 1-9. (DENG Min, CHENG Rong, SHU Rong-bo, et al. Exploration of Chemical-microbial Combined Remediation Technology for Typical Heavy Metals-contaminated Soils in Panxi Mining Region[J]. Multipurpose Utilization of Mineral Resources, 2021(4): 1-9.(in Chinese))
[11] 王连锐,陈 筠,杨 恒,等.微生物对红黏土强度的改良效应及机理研究[J].raybet体育在线 院报,2022,39(5):125-131.(WANG Lian-rui, CHEN Jun, YANG Heng, et al. Effectiveness and Mechanism of Improving Strength of Red Clay by Microorganism[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(5): 125-131.(in Chinese))
[12] 张 帆, 李 菁, 谭建华, 等. 吸附法处理重金属废水的研究进展[J]. 化工进展, 2013, 32(11): 2749-2756. (ZHANG Fan, LI Jing, TAN Jian-hua, et al. Advance of the Treatment of Heavy Metal Wastewater by Adsorption[J]. Chemical Industry and Engineering Progress, 2013, 32(11): 2749-2756.(in Chinese))
[13] 杨 恒,陈 筠,白文胜,等.活性炭固定微生物固化贵阳红黏土力学特性[J].中国岩溶,2019,38(4):619-626.(YANG Heng,CHEN Jun,BAI Wen-sheng,et al.Mechanical Properties of Microorganism Solidified Red Clay Immobilized by Activated Carbon in Guiyang[J].Carsologica Sinica,2019,38(4):619-626.(in Chinese))
[14] 邓志华,刘佩琪,邓 清,等.椰壳活性炭对水中重金属离子的吸附研究[J].化工新型材料,2018,46(3):273-276.(DENG Zhi-hua, LIU Pei-qi, DENG Qing, et al. Research on the Adsorption of Coconut Shell Activated Carbon for Heavy Metal Ion in the Water[J]. New Chemical Materials, 2018, 46(3): 273-276.(in Chinese))
[15] BEESLEY L, MORENO-JIMÉNEZ E, GOMEZ-EYLES J L, et al. A Review of Biochars' Potential Role in the Remediation, Revegetation and Restoration of Contaminated Soils[J]. Environmental Pollution, 2011, 159(12): 3269-3282.
[16] RAURET G, LÓPEZ-SÁNCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR Three Step Sequential Extraction Procedure Prior to the Certification of New Sediment and Soil Reference Materials[J]. Journal of Environmental Monitoring: JEM, 1999, 1(1): 57-61.
[17] 邓晓霞, 米艳华, 黎其万, 等. 利用改进的BCR法和Tessier法提取稻田土壤中Pb、Cd的对比研究[J]. 江西农业学报, 2016, 28(9): 64-68. (DENG Xiao-xia, MI Yan-hua, LI Qi-wan, et al. Comparative Study on Extraction of Pb and Cd from Paddy Soils by Modified BCR Method and Tessier Method[J]. Acta Agriculturae Jiangxi, 2016, 28(9): 64-68.(in Chinese))
[18] SONG B, ZENG G, GONG J, et al. Evaluation Methods for Assessing Effectiveness of in Situ Remediation of Soil and Sediment Contaminated with Organic Pollutants and Heavy Metals[J]. Environment International, 2017, 105: 43-55.
[19] 张玉国, 韩 帅, 万东阳, 等. 水泥固化重金属污染膨胀土物理性质试验研究[J]. 科学技术与工程, 2018, 18(31): 200-204. (ZHANG Yu-guo, HAN Shuai, WAN Dong-yang, et al. Study on the Physical Properties of Solidified Heavy Metal Contaminated Expansive Soil with the Cement[J]. Science Technology and Engineering, 2018, 18(31): 200-204.(in Chinese))
[20] 陈敏洁, 李亚飞, 李博文, 等. 微生物诱导碳酸钙沉淀对土壤中Pb污染稳定化的效果研究[J]. 有色金属工程, 2020, 10(12): 128-134. (CHEN Min-jie, LI Ya-fei, LI Bo-wen, et al. Effect of Stabilization of Pb-pollution in Soil Based on Microbial Induced Calcite Precipitation[J]. Nonferrous Metals Engineering, 2020, 10(12): 128-134.(in Chinese))
[21] 吴尚彬, 贾苍琴, 王贵和. 微生物土体改良技术研究综述[J]. 桂林理工大学学报, 2023, 43(2): 224-238. (WU Shang-bin, JIA Cang-qin, WANG Gui-he. Review on Microbial Soil Improvement Technology[J]. Journal of Guilin University of Technology, 2023, 43(2): 224-238.(in Chinese))
[22] 李雨霏. 基于收缩特性的贵阳红黏土结构性参数试验研究[D]. 贵阳: 贵州大学, 2020. (LI Yu-fei. Experimental Study on Structural Parameters of Guiyang Red Clay Based on Shrinkage Characteristics[D].Guiyang: Guizhou University, 2020. (in Chinese))
[23] 何 稼, 楚 剑, 刘汉龙, 等. 微生物岩土技术的研究进展[J]. 岩土工程学报, 2016, 38(4): 643-653. (HE Jia, CHU Jian, LIU Han-long, et al. Research Advances in Biogeotechnologies[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 643-653.(in Chinese))
[24] 高 宇, 程 潜, 张梦君, 等. 镉污染土壤修复技术研究[J]. 生物技术通报, 2017, 33(10): 103-110. (GAO Yu, CHENG Qian, ZHANG Meng-jun, et al. Research Advance on Remediation Technology of Cadmium Contaminated Soil[J]. Biotechnology Bulletin, 2017, 33(10): 103-110.(in Chinese))
[25] 付田雨, 高小童, 王 磊, 等. 污染土壤中重金属铅镉的微生物转化与代谢机制研究进展[J]. 湿法冶金, 2022, 41(4): 295-300. (FU Tian-yu, GAO Xiao-tong, WANG Lei, et al. Research Progress on Microbial Transformation and Metabolic Mechanism of Heavy Metals in Contaminated Soil[J]. Hydrometallurgy of China, 2022, 41(4): 295-300.(in Chinese))
[26] 左莹莹. 铅锌矿区土壤污染特征及微生物诱导碳酸钙对Pb2+的吸附作用研究[D]. 沈阳: 沈阳化工大学, 2021. (ZUO Ying-ying. Study on the Characteristics of Soil Pollution in Lead-zinc Mining Area and the Adsorption of Pb2+ by Microbe-induced Calcium Carbonate[D].Shenyang: Shenyang University of Chemical Technology, 2021. (in Chinese))
[27] 王子宁. 微生物诱导碳酸钙矿化过程的多因素调控研究[D]. 兰州: 兰州大学, 2019. (WANG Zi-ning. Study on Multi-factor Regulation of Microbial Induced Calcium Carbonate Precipitation[D].Lanzhou: Lanzhou University, 2019. (in Chinese))
PDF(6444 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map