Mechanical Analysis of Bearing Mechanism of Surrounding Rock and Multi-layer Lining under High Inner Hydraulic Pressure

LIU Yi-jie, HUANG Ben-sheng, YUAN Ming-dao, SHI Yong-sheng, ZHANG Xu-hui, XU Yun-qian

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (10) : 140-148.

PDF(1370 KB)
PDF(1370 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (10) : 140-148. DOI: 10.11988/ckyyb.20240007

Mechanical Analysis of Bearing Mechanism of Surrounding Rock and Multi-layer Lining under High Inner Hydraulic Pressure

Author information +
History +

Abstract

In the aim of exploring the mechanical actions underlying the joint bearing of surrounding rock and stacked lining structure in cirlular hydraulic tunnel, this study focuses on the three-layer stacked lining used in the Pearl River Delta Water Resource Allocation Project. The lining structure comprises an outer concrete segment, a self-compacting concrete filling layer (SCC), and an inner steel tube. Using the power series solution of plane elastic complex function theory and stress function analysis, we established a mechanical model considering the interaction between surrounding rock and lining as well as stress boundary conditions. We derived and solved the stress components at any point within the surrounding rock and each layer of the lining under combined excavation load and internal hydraulic pressure. This approach elucidates the load transfer mechanisms and behaviors of the stacked lining structure. We verified the accuracy of our method by comparing boundary stress results with numerical simulations. Finally, through parameter analysis, we examined how increased internal hydraulic pressure affects radial and circumferential normal stresses in the surrounding rock and the three-layer lining. Results manifest that when the surrounding rock and the three-layer lining work together to bear loads, both the radial and circumferential normal stresses exhibit a cosine distribution, while the shear stress follows a sine distribution. As the water pressure inside the water conveyance tunnel increases, the three-layer lining and surrounding rock become increasingly compressed in the radial direction, while the circumferential normal stress tends to become tensile and increases. The research findings provide a theoretical foundation for the design and construction of multi-layer lining systems in hydraulic tunnels.

Key words

circular water conveyance tunnel / three-layer linings / high inner hydraulic pressure / analytical method / load transfer mechanism

Cite this article

Download Citations
LIU Yi-jie , HUANG Ben-sheng , YUAN Ming-dao , et al . Mechanical Analysis of Bearing Mechanism of Surrounding Rock and Multi-layer Lining under High Inner Hydraulic Pressure[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(10): 140-148 https://doi.org/10.11988/ckyyb.20240007

References

[1]
孙钧, 杨钊, 王勇. 输水盾构隧洞复合衬砌结构设计计算研究[J]. 地下工程与隧道, 2011(1): 1-8.
(SUN Jun, YANG Zhao, WANG Yong. Design and Study on Composite Lining Structure of Water Supply Shield Tunnel[J]. Underground Engineering and Tunnel, 2011(1): 1-8. (in Chinese))
[2]
钮新强, 符志远, 张传健. 穿黄隧洞衬砌1∶1仿真模型试验研究[J]. 人民长江, 2011, 42(8): 77-86.
(NIU Xin-qiang, FU Zhi-yuan, ZHANG Chuan-jian. Full-scaled Simulation Model and Experiment Research on Lining of Tunnel Crossing Yellow River[J]. Yangtze River, 2011, 42(8): 77-86. (in Chinese))
[3]
何英杰, 张述琴, 吕国梁. 穿黄隧道内外衬联合受力结构模型试验研究[J]. raybet体育在线 院报, 2002, 19(增刊1):64-67.
(HE Ying-jie, ZHANG Shu-qin, Guo-liang. Experimental Study on Joint Force Structure Model of Inner and Outer Lining in Tunnel through Yellow River[J]. Journal of Yangtze River Scientific Research Institute, 2002, 19 (Supp.1): 64-67. (in Chinese))
[4]
段国学, 许晖. 穿黄隧洞衬砌1∶1仿真模型应力观测成果分析[J]. 人民长江, 2011, 42(8): 87-91.
(DUAN Guo-xue, XU Hui. Analysis on Stress Observation Results of Full-scaled Lining Simulation Model of Tunnel Crossing Yellow River[J]. Yangtze River, 2011, 42(8): 87-91. (in Chinese))
[5]
高必华, 于澎涛, 台德伟. 穿黄隧洞1∶1 仿真试验[J]. 河南水利与南水北调, 2007(1): 22-23.
(GAO Bi-hua, YU Peng-tao, TAI De-wei. 1:1 Simulation Test of Tunnel through Yellow River[J]. Henan Water Resources and South-to-North Water Diversion, 2007(1):22-23. (in Chinese))
[6]
杨钊, 潘晓明, 余俊. 盾构输水隧洞复合衬砌计算模型[J]. 中南大学学报(自然科学版), 2010, 41(5): 1945-1952.
(YANG Zhao, PAN Xiao-ming, YU Jun. Calculation Model on Double Linings of Water Diversion Shield Tunnel[J]. Journal of Central South University (Science and Technology), 2010, 41(5): 1945-1952. (in Chinese))
[7]
曹生荣, 杨帆, 秦敢, 等. 盾构输水隧洞设垫层预应力复合衬砌承载特性研究[J]. 水力发电学报, 2015, 34(2): 136-143.
(CAO Sheng-rong, YANG Fan, QIN Gan, et al. Study on Bearing Behavior of Prestressed Composite Linings with Cushion Layer for Water Conveyance Shield Tunnel[J]. Journal of Hydroelectric Engineering, 2015, 34(2): 136-143. (in Chinese))
[8]
章青, 卓家寿. 盾构式输水隧洞的计算模型及其工程应用[J]. 水利学报, 1999, 30(2): 19-22.
(ZHANG Qing, ZHUO Jia-shou. A Computational Model of Shield Tunnel for Water Conveyance[J]. Journal of Hydraulic Engineering, 1999, 30(2): 19-22. (in Chinese))
[9]
温晓英, 程子悦, 李琛, 等. 西江引水工程盾构输水隧洞衬砌形式的选择与设计[J]. 中国给水排水, 2012, 28(10): 1-4.
(WEN Xiao-ying, CHENG Zi-yue, LI Chen, et al. Selection and Design of Shield Tunnel Lining in Guangzhou Xijiang Water Diversion Proiect[J]. China Water & Wastewater, 2012, 28(10): 1-4. (in Chinese))
[10]
杨春山, 魏立新, 莫海鸿, 等. 盾构隧洞多层复合衬砌力学特性及其影响因素[J]. 合肥工业大学学报(自然科学版), 2019, 42(10): 1368-1374.
(YANG Chun-shan, WEI Li-xin, MO Hai-hong, et al. Mechanical Characteristics of Multilayer Composite Lining of Shield Tunnel and Their Influencing Factors[J]. Journal of Hefei University of Technology (Natural Science), 2019, 42(10): 1368-1374. (in Chinese))
[11]
刘庭金, 陈高敬, 唐欣薇, 等. 高内压作用下叠合式衬砌结构承载机理原型试验研究[J]. 水利学报, 2020, 51(3):295-304.
(LIU Ting-jin, CHEN Gao-jing, TANG Xin-wei, et al. The Bearing Mechanism of Superimposed Linings Structure under High Inner Hydraulic Pressure:a Prototype Experimental Study[J]. Journal of Hydraulic Engineering, 2020, 51(3):295-304. (in Chinese))
[12]
杨光华, 李志云, 徐传堡, 等. 盾构隧洞复合衬砌的荷载结构共同作用模型[J]. 水力发电学报, 2018, 37(10): 20-30.
(YANG Guang-hua, LI Zhi-yun, XU Chuan-bao, et al. Modeling Load-structure Interaction in Shield Tunnel Composite Lining[J]. Journal of Hydroelectric Engineering, 2018, 37(10): 20-30. (in Chinese))
[13]
晏启祥, 程曦, 何川, 等. 水压条件下盾构隧道双层衬砌力学特性分析[J]. 铁道工程学报, 2010, 27(9):55-59.
(YAN Qi-xiang, CHENG Xi, HE Chuan, et al. Analysis of Mechanical Properties of Double-layered Lining of Shield Tunnel under Water Pressure[J]. Journal of Railway Engineering Society, 2010, 27(9):55-59. (in Chinese))
[14]
张常光, 张庆贺, 赵均海, 等. 具有衬砌的圆形水工隧洞弹塑性应力统一解[J]. 同济大学学报(自然科学版), 2010, 38(1):50-53,134.
(ZHANG Chang-guang, ZHANG Qing-he, ZHAO Jun-hai, et al. Elastic-plastic Stress Unified Solutions of a Circular Hydraulic Tunnel with Lining[J]. Journal of Tongji University (Natural Science), 2010, 38(1):50- 53, 134. (in Chinese))
[15]
张常光, 胡云世, 赵均海, 等. 深埋圆形水工隧洞弹塑性应力和位移统一解[J]. 岩土工程学报, 2010, 32(11):1738-1745.
(ZHANG Chang-guang, HU Yun-shi, ZHAO Jun-hai, et al. Elastic-plastic Unified Solutions for Stresses and Displacements of a Deep Buried Circular Hydraulic Tunnel[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1738-1745. (in Chinese))
[16]
朱合华, 陶履彬. 盾构隧道衬砌结构受力分析的梁-弹簧系统模型[J]. 岩土力学, 1998(2): 26-32.
(ZHU He-hua, TAO Lü-bin. Beam-Spring System Model for Stress Analysis of Shield Tunnel Lining[J]. Rock and Soil Mechanics, 1998, 19(2): 26-32. (in Chinese))
[17]
DASARI G R, RAWLINGS C G., BOLTON M D. Numerical Modelling of a NATM Tunnel Construction in London Clay[C]//International Society for Soil Mechanics and Geotechnical Engineering. Proceedings of the International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground. London, UK. April 15, 1996:491-496.
[18]
KARAKUS M, FOWELL R J. FEM Analysis for the Effects of the NATM Construction Technique on Settlement above Shallow Soft Ground Tunnels[J]. Educational Researcher, 2000, 22(5):31-33.
[19]
DE FARIAS M M, MORAES Á H J, DE ASSIS A P. Displacement Control in Tunnels Excavated by the NATM: 3-D Numerical Simulations[J]. Tunnelling and Underground Space Technology, 2004, 19(3): 283-293.
[20]
WANG M B, LI S C. A Complex Variable Solution for Stress and Displacement Field around a Lined Circular Tunnel at Great Depth[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(7): 939-951.
[21]
阳军生, 肖小文, 张聪, 等. 盾构隧道双层衬砌结构受力现场监测试验研究[J]. 铁道工程学报, 2016, 33(7):46-53.
(YANG Jun-sheng, XIAO Xiao-wen, ZHANG Cong, et al. Experimental Research on the Site Monitoring of Double Lining Structure in Shield Tunnel[J]. Journal of Railway Engineering Society, 2016, 33(7): 46-53. (in Chinese))
[22]
张厚美, 过迟, 吕国梁. 盾构压力隧洞双层衬砌的力学模型研究[J]. 水利学报, 2001, 32(4): 28-33.
(ZHANG Hou-mei, GUO Chi, Guo-liang. Mechanical Model for Shield Pressure Tunnel with Secondary Linings[J]. Journal of Hydraulic Engineering, 2001, 32(4): 28-33. (in Chinese))
[23]
李敏, 朱银邦, 付云升, 等. 盾构输水隧洞双层复合衬砌的联合受力分析[J]. 中国水利水电科学研究院学报, 2014, 12(1):109-112.
(LI Min, ZHU Yin-bang, FU Yun-sheng, et al. Combined Action Analysis of Double Composite Lining of Water Diversion Shield Tunnel[J]. Journal of China Institute of Water Resources and Hydropower Research, 2014, 12(1): 109-112. (in Chinese))
[24]
LU A Z, ZHANG L Q, ZHANG N. Analytic Stress Solutions for a Circular Pressure Tunnel at Pressure and Great Depth Including Support Delay[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(3):514-519.
[25]
LU A Z, ZHANG N, KUANG L. Analytic Solutions of Stress and Displacement for a Non-circular Tunnel at Great Depth Including Support Delay[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 70: 69-81.
[26]
LU A Z, ZHANG N, QIN Y. Analytical Solutions for the Stress of a Lined Non-circular Tunnel under Full-slip Contact Conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 79: 183-192.
[27]
吕爱钟, 张路青. 地下隧洞力学分析的复变函数方法[M]. 北京: 科学出版社, 2007.
( Ai-zhong, ZHANG Lu-qing. Complex Variable Function Method for Mechanical Analysis of Underground Tunnel[M]. Beijing: Science Press, 2007. (in Chinese))
[28]
MUSKHELISHVILI N I. Some Basic Problems of the Mathematical Theory of Elasticity[M]. Groningen: Springer, 1963.
[29]
翟明杰, 杨进新. 盾构输水隧洞双层复合衬砌结构受力特性分析[J]. 特种结构, 2012, 29(3): 94-97.
(ZHAI Ming-jie, YANG Jin-xin. Analysis of Mechanical Characteristics of Double-layer Composite Lining Structure of Shield Water Conveyance Tunnel[J]. Special Structures, 2012, 29(3): 94-97. (in Chinese))
[30]
FANG H, ZHANG D, FANG Q. A Semi-analytical Method for Frictional Contact Analysis between Rock Mass and Concrete Linings[J]. Applied Mathematical Modelling, 2022, 105: 17-28.
[31]
FANG H, ZHANG D, FANG Q, et al. An Efficient Patch-to-patch Method for Coupling Independent Finite Element Subdomains with Intersecting Interfaces[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 388: 114209.
[32]
FANG H, ZHANG D, FANG Q, et al. A Generalized Complex Variable Method for Multiple Tunnels at Great Depth Considering the Interaction between Linings and Surrounding Rock[J]. Computers and Geotechnics, 2021, 129: 103891.
[33]
ZHANG D, XU T, FANG H, et al. Analytical Modeling of Complex Contact Behavior between Rock Mass and Lining Structure[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(3): 813-824.
[34]
张顶立, 方黄城, 陈立平, 等. 隧道支护结构体系的刚度设计理论[J]. 岩石力学与工程学报, 2021, 40(4): 649-662.
(ZHANG Ding-li, FANG Huang-cheng, CHEN Li-ping, et al. Stiffness Design Theory for Tunnel-support System[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 649-662. (in Chinese))
[35]
周爱兆, 李国富. 圆形隧洞复合衬砌应力变形弹性解[J]. 工业建筑, 2012, 42(12): 58-61, 90.
(ZHOU Ai-zhao, LI Guo-fu. Elastic Solution of Composite Lining Stress Deformation in Circular Tunnel[J]. Industrial Construction, 2012, 42(12):58- 61, 90. (in Chinese))
[36]
严振瑞. 珠江三角洲水资源配置工程关键技术问题思考[J]. 水利规划与设计, 2015(11): 48-51.
(YAN Zhen-rui. Thoughts on Key Technical Problems of Water Resources Allocation Project in Pearl River Delta[J]. Water Resources Planning and Design, 2015(11): 48-51. (in Chinese))
PDF(1370 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map