Numerical Calculation of Flow Field at Blind Tee-junction and Influencing Factors of Local Resistance Coefficient

WU Sen-lin, WANG Qiu-liang, GAN Du-fen, LI En, WANG Yi-fan, LIU Yun

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (9) : 85-92.

PDF(12828 KB)
PDF(12828 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (9) : 85-92. DOI: 10.11988/ckyyb.20220526
Hydraulics

Numerical Calculation of Flow Field at Blind Tee-junction and Influencing Factors of Local Resistance Coefficient

  • WU Sen-lin1, WANG Qiu-liang2, GAN Du-fen3, LI En1, WANG Yi-fan1, LIU Yun1
Author information +
History +

Abstract

Blind tee, as an essential component in pipeline networks for transmission and distribution systems, plays a crucial role in ensuring stable pipeline operation. In this study, a model was established using Solidworks 2019 and Fluent to perform three-dimensional flow field calculations. The local resistance coefficient of the blind tee was analyzed by combining orthogonal analysis tests and SPSS software analysis. Empirical formulas were derived to explain the influence of each factor on local resistance coefficient. An optimal runner structure model was developed. The results indicate that the local resistance loss coefficient (ζ) decreases quadratically with increasing Reynolds number (Re) and branch pipe diameter (d), and increases quadratically with increasing included angle (θ) of the branch pipe. Furthermore, ζ decreases linearly with increasing blind end length (L3). Through multivariate nonlinear regression, a correlation formula for the local resistance coefficient of the blind tee was derived. The fluid velocity near the right wall of branch pipe increases, and the distribution of turbulent kinetic energy at the bifurcation and branch pipe becomes more pronounced. Within the simulated range, the influence of each factor on ζ can be ranked as follows: Reynolds number > included angle > branch pipe diameter > blind end length. The smallest combination of local resistance loss coefficient was observed when the Reynolds number was 6.4×105, the included angle was π/6, the branch pipe diameter was 0.9D, and the blind end length was 4.0D. The research findings provide a theoretical basis for blind tee structure design and engineering applications.

Key words

blind tee-junction / local resistance coefficient / hydraulic properties / numerical simulation / orthogonal test

Cite this article

Download Citations
WU Sen-lin, WANG Qiu-liang, GAN Du-fen, LI En, WANG Yi-fan, LIU Yun. Numerical Calculation of Flow Field at Blind Tee-junction and Influencing Factors of Local Resistance Coefficient[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(9): 85-92 https://doi.org/10.11988/ckyyb.20220526

References

[1] 许 虎, 吴文勇, 王振华, 等. 基于CFD的斜三通管水力特性分析及流场计算[J]. 排灌机械工程学报, 2020, 38(11): 1138-1144.
[2] 王秋良, 王振华, 李文昊, 等. 基于CFD的新型三通管结构优化与水力特性分析[J]. 中国农村水利水电, 2020(8): 203-210.
[3] 巩启涛, 杨俊红, 韩 奎, 等. 大管径T型三通数值模拟及局部阻力特性分析[J]. 动力工程学报, 2016, 36(9): 753-758, 764.
[4] 魏文礼, 洪云飞, 邵世鹏, 等. T型管道冷热流体混合的数值模拟研究[J]. 系统仿真学报, 2015, 27(7): 1444-1450.
[5] 陈伟业, 吕宏兴, 石 喜, 等. 等径PVC三通管局部水头损失系数试验研究[J]. 灌溉排水学报, 2013, 32(1): 128-130.
[6] 陈江林, 吕宏兴, 石 喜, 等. T型三通管水力特性的数值模拟与试验研究[J]. 农业工程学报, 2012, 28(5): 73-77.
[7] 石 喜, 吕宏兴, 朱德兰, 等. PVC三通管水流阻力与流动特征分析[J]. 农业机械学报, 2013, 44(1): 73-79, 89.
[8] 郑文玲, 张耀哲, 杨石磊, 等. 异型岔管水力特性的数值模拟[J]. 西北农林科技大学学报(自然科学版), 2014, 42(11): 183-189, 198.
[9] 李 睿,孙治谦,刘志博,等.液固两相流盲三通冲蚀特性数值分析[J]. 石油机械,2022,50(1):128-136.
[10] 王晓博, 高 振, 王秀林, 等. LNG接收站IFV海水系统模拟冲刷腐蚀行为研究[J]. 材料保护, 2021, 54(11): 69-77.
[11] MA Y G,LI C,PAN Y Z,et al. A Flow Rate Measurement Method for Horizontal Oil-Gas-Water Three-Phase Flows ased on Venturi meter, Blind Tee, and Gamma-Ray Attenuation[J]. Flow Measurement and Instrumentation,2021,80(2):101965.
[12] BIN RAZALI M A, XIE C G, LOH W L. Experimental Investigation of Gas-Liquid Flow in a Vertical Venturi Installed Downstream of a Horizontal Blind Tee Flow Conditioner and the Flow Regime Transition[J]. Flow Measurement and Instrumentation, 2021, 80: 101961.
[13] 李介普. 石化管道冲蚀磨损的实验及数值模拟研究[D]. 北京: 中国石油大学(北京), 2017.
[14] 汪贵磊,陈 勇,严超宇,等.提升管出口T型弯头压降特性的实验分析[J].化工学报,2014,65(2):555-560.
[15] 杨湘隆, 黄社华, 熊 渊. 圆管弯道内部流动数值模拟及湍流模式比较研究[J]. 西安理工大学学报, 2010, 26(1): 116-120.
[16] 冯璐璐, 徐让书, 冯建宇. 螺旋弯管内流动与传热特性的数值模拟[J]. 排灌机械工程学报, 2020, 38(7): 697-701.
[17] WANG Y Q, DING Z W. Optimization Design of Hump Phenomenon of Low Specific Speed Centrifugal Pump Based on CFD and Orthogonal Test[J]. Scientific Reports, 2022, 12: 12121.
[18] DAI D,ZHAO Y,CAO C,et al.Experimental Investigation on Process Parameters during Laser-Assisted Turning of SiC Ceramics Based on Orthogonal Method and Response Surface Methodology[J].Materials,2022,15(14): 4889.
[19] 色麦尔江·麦麦提玉苏普, 陶士超. 改良盐渍土强度变形及其微观特性试验研究[J]. raybet体育在线 院报, 2022, 39(6): 113-119, 132.
[20] 伍鹤皋, 于金弘, 石长征, 等. 基于正交试验法的埋地钢管参数敏感性分析[J]. raybet体育在线 院报, 2021, 38(8): 97-103.
PDF(12828 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map