The CFG pile composite foundation offers notable environmental advantages and has seen extensive utilization for foundational stabilization in recent years. Surface soil load-bearing capacity deteriorates due to the inferior engineering properties of natural foundations, coupled with disruptions originating from CFG pile construction. Upon load application on the composite foundation, the CFG piles, behaving as rigid bodies, can easily cause an excessive pile-soil stress ratio, which is detrimental to the composite foundation’s interaction and inflicts damage upon the cushion layer. In view of this, we put forward the substitution of the 50 cm thick severely disturbed topsoil with compacted crushed stones, followed by the application of a cement-soil cushion to establish an innovative embedded cushion layer structure, geared towards the augmentation of the CFG pile composite foundation’s bearing capacity. The findings are as follows: in-situ load tests on single CFG pile composite foundation revealed that the pile-soil stress ratio within the embedded cushion layer was considerably less than that in traditional cushion layer conditions under the ultimate load, dropping from 22.9 to 13.8, a decrease of approximately 40% compared to traditional cushion layer conditions. Additionally, the pile-soil stress ratio curve was smoother, with no significant precipitous decline in pile-soil stress ratio after reaching ultimate bearing capacity, which is favorable for the foundation’s secure loading. Mathematical simulation methods were employed to model the vertical load characteristic of the CFG pile group composite foundation. The embedded cushion layer contributed significantly to the comprehensive fortification of the compression layers, thereby mitigating the piles’ relative penetration into the cushion layer. This resulted in a more uniform deformation of the cushion layer, effectively curtailing local penetration and uplift. Damage to the cushion layer structure caused by extreme pile soil stress ratios could be circumvented accordingly. Lastly, the embedded cushion layer enhanced the horizontal deformation state of CFG piles at different parts. The increased constraint at the top transformed the stress pattern of CFG piles from an ‘approximate cantilever’ to being ‘approximately simply supported’, thereby ameliorating the deformation and stress state of the side and corner piles.
Key words
CFG pile composite foundation /
pile-soil stress ratio /
embedded mattress layer /
load test /
numerical calculation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 《工程地质手册》编委会. 工程地质手册[M]. 5版. 北京: 中国建筑工业出版社, 2018.
[2] 党昱敬. 刚性桩复合地基应用热点问题探讨[J]. 建筑结构, 2022, 52(24): 106-113.
[3] 化建新, 董长和, 孙东晖. CFG桩垫层效应研究[J]. 岩土工程技术, 1998, 12(1): 48-50, 2.
[4] 包 华, 崔开太, 徐汉涛, 等. 小直径刚性桩复合地基桩土应力比初步研究[J]. 南通工学院学报(自然科学版), 2003, 2(4): 50-53.
[5] 杨光华,李卓勋,刘清华,等.刚性桩复合地基桩土应力比问题探讨[J]. 广东水利水电,2020(2):1-5,57.
[6] 闫明礼, 张东刚. CFG桩复合地基技术及工程实践[M]. 2版. 北京: 中国水利水电出版社, 2006.
[7] 姚云龙, 张晓辉, 刘鑫, 等. 基于现场试验的CFG桩复合地基桩帽与垫层效应分析[J/OL]. 太原理工大学学报, (2022-08-25)https://kns.cnki.net/kcms/detail/14.1220.N.20220825.1357.004.html.
[8] 张旭群, 杨光华, 陈 锐, 等. CM桩复合地基桩土应力比及垫层效应现场试验研究[J]. 岩土力学, 2015, 36(增刊1): 357-361.
[9] 徐妍彦, 刘均卫, 陈 娜, 等. 某大型散货码头堆场地基处理方案[J]. raybet体育在线
院报, 2023, 40(5): 131-138.
[10]陈 明, 李镜培, 梁发云, 等. 刚性桩复合地基负摩阻区深度的一种计算方法[J]. 同济大学学报(自然科学版), 2011, 39(7): 955-959.
[11]ZHANG S, ZHAO M, HE L, et al. Calculation of Settlement of Composite Foundation with Rigid Piles under Flexible Ground[J]. Journal of Highway and Transportation Research and Development (English Edition), 2011, 5(2): 15-21.
[12]陶景晖, 卢中强, 金如元, 等. 刚性桩复合地基桩顶埋入式垫层机理分析[J]. 建筑结构学报, 2017, 38(2): 158-167.
[13]肖耀廷,党发宁.复合地基褥垫层厚度的设计方法研究[J].地下空间与工程学报,2016,12(5):1331-1335.
[14]王惠昌, 王 斌, 蒋仁贵, 等. 用桩顶垫层压缩量法计算刚性桩复合地基最大沉降量[J]. 岩土力学, 2016, 37(增刊2): 442-448.
[15]张建伟, 原 华, 孔德志. CFG桩复合地基褥垫层效用的有限元分析[J]. 岩土工程学报, 2011, 33(增刊2): 460-463.
[16]芮 瑞, 孙 义, 朱 勇, 等. 刚性基础下复合地基褥垫层细观工作机制[J]. 岩土力学, 2019, 40(2): 445-454.
[17]靳 炎. CFG桩复合地基承载特征及沉降计算方法研究[D]. 北京: 北方工业大学,2022.
[18]郑 刚, 刘双菊, 伍止超. 不同厚度褥垫层刚性桩复合地基工作特性研究[J]. 岩土力学, 2006, 27(8): 1357-1360.