Long-time Series Ecological Quality Assessment and Influencing Factors Analysis for Changshou District, Chongqing

LIN Na, ZHANG Di, PAN Jian-ping, FENG Shan-shan, PAN Peng

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (11) : 56-62.

PDF(5657 KB)
PDF(5657 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (11) : 56-62. DOI: 10.11988/ckyyb.20220860
Soil and Water Conservation and Ecological Restoration

Long-time Series Ecological Quality Assessment and Influencing Factors Analysis for Changshou District, Chongqing

  • LIN Na, ZHANG Di, PAN Jian-ping, FENG Shan-shan, PAN Peng
Author information +
History +

Abstract

Studying the spatio-temporal evolution process and changing factors of ecological quality in Changshou District of Chongqing is of great significance for the ecological construction and restoration of the Three Gorges Reservoir area. In this study, we utilized Landsat-5 TM images and Landsat-8 OLI images from 2002 to 2021 and constructed the Remote Sensing Ecological Index (RSEI). With the RSEI, we investigated the evolution of ecological quality in Changshou District from both temporal and spatial perspectives. Additionally, we employed the random forest model regression to analyze the correlation between ecological quality and potential driving factors. Our findings revealed the following: 1) The average RSEI in Changshou District declined from 0.642 7 in 2002 to 0.566 5 in 2006. However, since 2010, the average RSEI has exhibited a steady increase, indicating an overall improvement in ecological quality after a previous deterioration. 2) The areas with better ecological quality mainly concentrates in higher elevation regions, whereas the industrial park, chemical industry park, and urban residential areas along the Yangtze River exhibited relatively poorer ecological conditions. 3) Over the period from 2002 to 2021, Changshou District experienced an improved area of 628.838 km2, accounting for 44.16% of the total, and a degraded area of 183.269 km2, which represented 12.87% of the total. The overall effect of ecological quality improvement was evident. 4) Through random forest regression analysis, we identified elevation and population density as the primary potential driving factors influencing RSEI changes. Moreover, human activities and terrain factors played a dominant role in regional ecological changes. As a result, RSEI and the random forest model can be effectively utilized for evaluating the ecological quality of both Changshou District and similar areas within the Three Gorges Reservoir region.

Key words

ecological quality / RSEI / random forest / space-time variations / driving factors / Three Gorges Reservoir area / Changshou District

Cite this article

Download Citations
LIN Na, ZHANG Di, PAN Jian-ping, FENG Shan-shan, PAN Peng. Long-time Series Ecological Quality Assessment and Influencing Factors Analysis for Changshou District, Chongqing[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(11): 56-62 https://doi.org/10.11988/ckyyb.20220860

References

[1] 李 辉, 谭 淼, 姜 文, 等. 三峡库区经济发展与生态环境的时空耦合特征[J]. 水土保持通报, 2020, 40(1): 243-249.
[2] 廖 桃, 温兆飞, 周 旭, 等. 三峡库区重庆段森林长势空间分异性及其驱动因子[J]. 生态学报, 2022, 42(10): 4076-4090.
[3] HJ/T 192—2006, 生态环境状况评价技术规范(试行)[S].北京:中国环境科学出版社,2006.
[4] 张楠楠, 石水莲, 李 博, 等. 基于“压力-状态-响应”模型的土地生态安全评价及预测: 以沈阳市为例[J]. 土壤通报, 2022, 53(1): 28-35.
[5] 韩振华, 李建东, 殷 红, 等. 基于景观格局的辽河三角洲湿地生态安全分析[J]. 生态环境学报, 2010, 19(3): 701-705.
[6] 杨 楠,王小文,卓 悦.陕南地区生态环境状况综合评价及对策[J]. 水土保持通报,2008,28(2):190-194.
[7] 赵敏敏, 何志斌, 蔺鹏飞, 等. 基于压力-状态-响应模型的黑河中游张掖市生态安全评价[J]. 生态学报, 2021, 41(22): 9039-9049.
[8] 彭 建, 蔡运龙, 王秀春. 基于景观生态学的喀斯特生态脆弱区土地利用/覆被变化评价: 以贵州猫跳河流域为例[J]. 中国岩溶, 2007, 26(2): 137-143.
[9] 徐涵秋. 区域生态环境变化的遥感评价指数[J]. 中国环境科学, 2013, 33(5): 889-897.
[10] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24): 7853-7862.
[11] 魏雨涵, 钱建平, 范伟伟, 等. 基于RSEI的漓江流域生态环境质量动态监测[J]. 中国水土保持科学(中英文), 2021, 19(1): 122-131.
[12] 张 娟, 文广超, 王恩营, 等. 基于遥感生态指数的焦作市生态环境动态监测与评价[J]. 水土保持通报, 2020, 40(6): 107-114.
[13] 钟欣呈,许泉立.基于RSEI模型的玉溪市生态环境变化监测与评价[J]. 水土保持研究,2021,28(4):350-357.
[14] 王志超, 何新华. 基于改进型遥感生态距离指数的秀山县生态环境质量评估[J]. raybet体育在线 院报, 2021, 38(8): 54-59, 65.
[15] 李 妍, 张国钦, 吝 涛, 等. 乡镇遥感生态指数时空变化及影响因子研究: 以天津市蓟州区为例[J]. 生态学报, 2022, 42(2): 474-486.
[16] BREIMAN L. Random Forest[J].Machine Learning,2001,45:5-32.
[17] 匡开新, 杨英宝, 高永年, 等. 协同Sentinel合成孔径雷达和光学影像多特征的不透水面随机森林提取方法[J]. 遥感技术与应用, 2023, 38(2): 422-431.
[18] 王 斌, 何丙辉, 林 娜, 等. 奉节县脐橙果园用地时空演变特征与驱动因子分析[J]. 农业机械学报, 2021, 52(6): 204-214.
[19] 白 云,陈国强.基于尺度特征融合的随机森林日供水量预测模型[J]. raybet体育在线 院报,2022,39(3):33-37.
[20] 焦 欢,肖 禾,丁 忆,等. 基于“三生空间”的农村居民点空间布局优化研究: 以重庆市长寿区为例[J]. 贵州师范大学学报(自然科学版),2022,40(1):34-42.
[21] 李红星, 黄解军, 梁友嘉, 等. 基于遥感生态指数的武汉市生态环境质量评估[J]. 云南大学学报(自然科学版), 2020, 42(1): 81-90.
[22] 安 敏, 李文佳, 吴海林, 等. 三峡库区生态环境质量的时空格局演变及影响因素[J]. 长江流域资源与环境, 2022, 31(12): 2743-2755.
[23] 邓力维,徐丽华.重庆南川区生态环境变化及其对城市不透水面的响应[J].生态科学,2022,41(3):107-116.
[24] 杨盼盼, 王念秦, 郭有金, 等. 基于加权信息量模型的临潼区滑坡易发性评价[J]. raybet体育在线 院报, 2020, 37(9): 50-56.
[25] 杨丽萍, 任 杰, 王 宇, 等. 基于多源遥感数据的居延泽地区土壤盐分估算模型[J]. 农业机械学报, 2022, 53(11): 226-235.
[26] 侯蒙京, 殷建鹏, 葛 静, 等. 基于随机森林的高寒湿地地区土地覆盖遥感分类方法[J]. 农业机械学报, 2020, 51(7): 220-227.
PDF(5657 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map