Mapping the Susceptibility of Lushan Seismic Landslide Based on Multimodal Classification Model

LI Qi-rong, MIAO Ze-lang, CHEN Shuai, LI Ke, PU Ming-hui

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (5) : 63-70.

PDF(32864 KB)
PDF(32864 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (5) : 63-70. DOI: 10.11988/ckyyb.20210074
ENGINEERING SAFETY AND DISASTER PREVENTION

Mapping the Susceptibility of Lushan Seismic Landslide Based on Multimodal Classification Model

  • LI Qi-rong1,2,3, MIAO Ze-lang1,2, CHEN Shuai1,2, LI Ke1,2, PU Ming-hui1,2
Author information +
History +

Abstract

To improve the accuracy of assessing seismic landslide susceptibility, we proposed a landslide susceptibility assessment model from the perspective of multimodal data fusion. With the Lushan earthquake as a case study, we extracted fifteen causative factors of landslide from multi-source data and divided them into four modalities. With the slope unit being the assessment unit, we compared and evaluated the present method and the logistic regression model by using receiver operating characteristic (ROC) curve and zonal landslide hazard point density. Results demonstrate that the area under the ROC curve is 0.86, and the hazard point density of high and very high susceptibility zones is 2.24 points/km2, indicating that the present model is well applicable to the study region. Also, the present model has higher accuracy and better performance than the logistic regression model, suggesting that the presented model has a better applicability in the region.

Key words

landslide / susceptibility assessment / accuracy / multimodal classification model / causative factors / Lushan earthquake

Cite this article

Download Citations
LI Qi-rong, MIAO Ze-lang, CHEN Shuai, LI Ke, PU Ming-hui. Mapping the Susceptibility of Lushan Seismic Landslide Based on Multimodal Classification Model[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(5): 63-70 https://doi.org/10.11988/ckyyb.20210074

References

[1] 吴玮莹.云南鲁甸地震滑坡易发性分析[D].北京: 中国地震局地震预测研究所, 2018.
[2] 许 冲, 徐锡伟, 郑文俊, 等. 2013年四川省芦山“4·20”7.0级强烈地震触发滑坡[J].地震地质,2013, 35(3): 641-660.
[3] XU C, XU X, SHYU J B H. Database and Spatial Distribution of Landslides Triggered by the Lushan, China Mw 6.6 Earthquake of 20 April 2013[J]. Geomorphology, 2015, 248(1): 77-92.
[4] HONG H, PRADHAN B, SAMEEN M I, et al. Improving the Accuracy of Landslide Susceptibility Model Using a Novel Region-Partitioning Approach[J]. Landslides, 2018, 15(4): 753-772.
[5] 郑迎凯, 陈建国, 王成彬,等. 确定性系数与随机森林模型在云南芒市滑坡易发性评价中的应用[J].地质科技通报, 2020, 39(6): 131-144.
[6] 刘 瑞, 李露瑶, 杨 鑫, 等. 基于因子强关联分析方法的滑坡易发性评价[J].地球与环境, 2021,49(2): 198-206.
[7] PRADHAN B. A Comparative Study on the Predictive Ability of the Decision Tree, Support Vector Machine and Neuro-fuzzy Models in Landslide Susceptibility Mapping Using GIS[J]. Computers & Geosciences, 2013, 51(1): 350-365.
[8] 王念秦, 朱文博, 郭有金. 基于PSO-SVM模型的滑坡易发性评价[J].raybet体育在线 院报, 2021,38(4):56-62.
[9] JAAFARI A, PANAHI M, PHAM B T, et al. Meta optimization of an Adaptive Neuro-fuzzy Inference System with Grey Wolf Optimizer and Biogeography-based Optimization Algorithms for Spatial Prediction of Landslide Susceptibility[J]. Catena, 2019, 175(1): 430-445.
[10] 杨盼盼, 王念秦, 郭有金, 等. 基于加权信息量模型的临潼区滑坡易发性评价[J].raybet体育在线 院报, 2020, 37(9): 50-56.
[11] 张庭瑜, 毛忠安, 孙增慧. 径向基神经网络耦合确定性指数的滑坡易发性分区研究[J].raybet体育在线 院报,2021,38(11):64-72.
[12] 安凯强, 牛瑞卿. 信息量支持下SVM模型滑坡灾害易发性评价[J].raybet体育在线 院报,2016, 33(8): 47-51,58.
[13] WANG Y, FENG L, LI S, et al. A Hybrid Model Considering Spatial Heterogeneity for Landslide Susceptibility Mapping in Zhejiang Province, China[J]. Catena, 2020, 188(1): 104425.
[14] 陈 成, 胡凯衡. 汶川、芦山和鲁甸地震滑坡分布规律对比研究 [J].工程地质学报, 2017, 25(3): 806-814.
[15] 徐锡伟, 陈桂华, 于贵华, 等. 芦山地震发震构造及其与汶川地震关系讨论[J].地学前缘, 2013, 20(3): 11-20.
[16] 马思远.基于Newmark模型的地震滑坡危险性评价研究[D].北京:中国地震局地质研究所, 2018.
[17] XU C, XU X, SHYU J B H. Database and Spatial Distribution of Landslides Triggered by the Lushan, China Mw 6.6 Earthquake of 20 April 2013[J]. Geomorphology, 2015, 248(1): 77-92.
[18] HE J, YANG K, TANG W, et al. The First High-resolution Meteorological Forcing Dataset for Land Process Studies over China[J]. Scientific Data, 2020, 7(1): 1-11.
[19] YANG K,HE J,TANG W,et al.On Downward Shortwave and Longwave Radiations over High Altitude Regions: Observation and Modeling in the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2010, 150(1): 38-46.
[20] REICHENBACH P,ROSSI M,MALAMUD B D,et al. A Review of Statistically-based Landslide Susceptibility Models[J]. Earth-Science Reviews,2018,180(7):60-91.
[21] 陈 涛, 钟子颖, 牛瑞卿, 等. 利用深度信念网络进行滑坡易发性评价[J].武汉大学学报(信息科学版), 2020, 45(11): 1809-1817.
[22] 丛威青, 潘 懋, 李铁锋, 等. 基于GIS的滑坡、泥石流灾害危险性区划关键问题研究[J].地学前缘,2006, 13(1): 185-190.
PDF(32864 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map