Research Status and Progress of Cohesive Sediment Flocculation

LI Jie, YANG Wen-jun, JING Si-yu, CHEN Yue

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (4) : 8-13.

PDF(1207 KB)
PDF(1207 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (4) : 8-13. DOI: 10.11988/ckyyb.20201353
RIVER LAKE PROTECTION AND REGULATION

Research Status and Progress of Cohesive Sediment Flocculation

  • LI Jie1, YANG Wen-jun2, JING Si-yu1, CHEN Yue3
Author information +
History +

Abstract

Study on the flocculation mechanism of cohesive sediment is of great significance to the treatment of deposition in estuaries, reservoirs and waterways and water environment protection. In this paper, we made a review on the equipment and methods used in numerical simulation, field observation and laboratory experiment of cohesive sediment flocculation, and also expounded the research achievements of sediment flocculation under the influences of turbulent shear rate, salinity, suspended sediment concentration and organic matters. Researches in the following fields are still inadequate: three-dimensional observation of floc structure, in-situ observation of flocculation in high-concentration water, sediment flocculation influenced by multi-factor, and the quantitative relation between flow turbulence structure and flocculation characteristics. Researches need to be strengthened in the following aspects: developing flocculation observation device; quantifying the corresponding relation between flow turbulence structure and flocculation characteristics; multi-factor coupling experiment; and three-dimensional structure observation of floc.

Key words

cohesive sediment / flocculation devices / experimental methods / influencing factors / mechanisms of flocculation

Cite this article

Download Citations
LI Jie, YANG Wen-jun, JING Si-yu, CHEN Yue. Research Status and Progress of Cohesive Sediment Flocculation[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(4): 8-13 https://doi.org/10.11988/ckyyb.20201353

References

[1] MANNING A J,DYER K R.A Laboratory Examination of Floc Characteristics with Regard to Turbulent Shearing[J]. Marine Geology, 1999, 160(1): 147-170.
[2] 刘俊秀, 吉祖稳, 王党伟. 黏性细颗粒泥沙絮凝试验研究综述[J]. 泥沙研究, 2019, 44(2):63-68.
[3] MIETTA F, CHASSAGNE C, MANNING AJ, et al. Influence of Shear Rate, Organic Matter Content, pH and Salinity on Mud Flocculation[J]. Ocean Dynamics, 2009, 59(5): 751-763.
[4] KUMAR R G, STROM K B, KEYVANI A. Floc Properties and Settling Velocity of San Jacinto Estuary Mud under Variable Shear and Salinity Conditions[J]. Continental Shelf Research, 2010, 30(20): 2067-2081.
[5] GOLDBERG S. Flocculation of Illite/Kaolinite and Illite/Montmorillonite Mixtures as Affected by Sodium Adsorption Ratio and pH[J]. Clays & Clay Minerals, 1991, 39(4):375-380.
[6] 祖 波, 李 旺, 李振亮,等. 黏性泥沙受紊动剪切作用下的絮凝效果研究[J]. 水利水电技术, 2018, 49(10):123-129.
[7] MEHTA A J. On Estuarine Cohesive Sediment Suspension Behavior[J]. Journal of Geophysical Research Atmospheres, 1989, 94(C10): 14303.
[8] 钱 宁. 高含沙水流运动[M]. 北京:清华大学出版社, 1989.
[9] GOLUEKE C G, OSWALD W J. Surface Properties and Ion Exchange in Algae Removal[J]. Journal of Water Pollution Control Federation, 1970, 42(8): 304-314.
[10] UMMALYMA S B, MATHEW A K, PANDEY A, et al. Harvesting of Microalgal Biomass: Efficient Method for Flocculation Through pH Modulation[J]. Bioresour Technology, 2016, 213: 216-221.
[11] LEE A K,LEWIS D M,ASHMAN P J. Energy Requirements and Economic Analysis of a Full-scale Microbial Flocculation System for Microalgal Harvesting[J]. Chemical Engineering Research & Design,2010,88(8):988-996.
[12] 薛溪发,张红兵,曹豪豪,等. 微藻絮凝采收技术研究进展[J]. 安徽农学通报, 2021, 27(1): 33-36, 67.
[13] 马文浩,张靖晨,周 伟,等. 岳阳王家河疏浚底泥的絮凝沉降试验研究[J]. 施工技术,2020,49(18):86-89.
[14] 黄佳音,王占军,肖 博,等. 白洋淀疏浚底泥絮凝脱水试验及应用[J]. 水运工程, 2020, 576(增刊1): 21-24.
[15] 王东星,唐弈锴,伍林峰.疏浚淤泥化学絮凝-真空预压深度脱水效果评价[J].岩土力学,2020,41(12):1-10.
[16] 徐路遥,罗 敏,马玲玲,等.AAO工艺+絮凝沉淀处理高COD废水[J].水处理技术,2021,47(3):98-101,105.
[17] 郑 昆,杨 红.污水处理中絮凝剂的应用[J].清洗世界,2020,36(10):106-107.
[18] 林 喆,张文刚.基于絮凝动力学的煤泥水絮凝过程及其研究方法综述[J].中国矿业,2021,30(1):160-167.
[19] FENNESSY M J, DYER K R, HUNTLEY D A. INSSEV: An Instrument to Measure the Size and Settling Velocity of Flocs in Situ[J]. Marine Geology, 1994, 117(1/2/3/4): 107-117.
[20] SAFAK I, ALLISON M A, SHEREMET A. Floc Variability under Changing Turbulent Stresses and Sediment Availability on a Wave Energetic Muddy Shelf[J]. Continental Shelf Research, 2013, 53: 1-10.
[21] 程 江,何 青,王元叶.利用LISST观测絮凝体粒径、有效密度和沉速的垂线分布[J].泥沙研究,2005(1):33-39.
[22] XIA X M, LI Y, YANG H,et al. Observations on the Size and Settling Velocity Distributions of Suspended Sediment in the Pearl River Estuary, China[J]. Continental Shelf Research, 2004, 24(16): 1809-1826.
[23] 李文杰, 张凌越, 杨胜发,等. 三峡库区泥沙絮凝临界条件现场测量[J]. 水科学进展, 2019, 30(1):76-83.
[24] 郭 超,何 青.长江中下游洪枯季泥沙絮凝研究[J].泥沙研究,2014(5):59-64.
[25] HUANG He-ning. Fractal Properties of Flocs Formed by Fluid Shear and Differential Settling[J]. Physics of Fluids, 1994, 6(10): 3229-3234.
[26] 汤德意,翁浩轩,史燕南.水库疏浚底泥絮凝沉降室内试验研究[J].raybet体育在线 院报,2018,35(4):31-36.
[27] 王 茜,朱勇辉,柴朝晖, 等.河湖淤泥絮凝沉降特性试验研究[J].raybet体育在线 院报,2020,37(1):13-17,29.
[28] LEUSSEN W V.The Variability of Settling Velocities of Suspended Fine-grained Sediment in the EMS Estuary[J]. Journal of Sea Research, 1999, 41(1/2):109-118.
[29] 王 维,李绍武.黏性泥沙絮网结构形成过程研究[J].泥沙研究,2014(1):68-73.
[30] 王 军. 三峡库区黏性泥沙在紊动条件下的絮凝特性研究[D].重庆:重庆交通大学,2019.
[31] 杨美卿, 钱 宁. 紊动对细泥沙浆液絮凝结构的影响[J]. 水利学报, 1986(8):23-32.
[32] 沈 洋. 三峡水库动水絮凝沉降特性初步研究[D].武汉: 雷电竞体育 ,2018.
[33] 祖 波, 王 军, 李振亮,等. 三峡库区黏性泥沙在紊动剪切作用下的絮凝试验研究[J]. 水科学进展, 2018, 29(2):196-203.
[34] GRATIOT N, MANNING A J. An Experimental Investigation of Floc Characteristics in a Diffusive Turbulent Flow[J]. Journal of Coastal Research, 2004: 105-113.
[35] 宋迪迪, 张根广, 张宇卓,等. Image-proplus软件在泥沙絮凝体结构特征分析中的应用[J]. 水资源与水工程学报, 2018, 29(4):156-161.
[36] 余立新, 张金凤, 张庆河,等. 有机质对絮团形态影响的试验研究[J]. 电子显微学报, 2020, 39(2):64-69.
[37] 赵慧明, 汤立群, 王崇浩,等. 生物絮凝泥沙的絮凝结构实验分析[J]. 泥沙研究,2014(6):12-18.
[38] 柴朝晖,杨国录,王 茜, 等.紊流对粘性细颗粒泥沙絮凝影响[J].水科学进展,2012,23(6):808-814.
[39] 黄忠钊, 谭立新. 一种改进的聚合模型在污泥絮凝-沉降模拟中的应用[J]. raybet体育在线 院报, 2017,34(3):8-13.
[40] 王 龙,李家春,周济福.黏性泥沙絮凝沉降的数值研究[J].物理学报,2010,59(5):3315-3323.
[41] 张金凤,张庆河,乔光全.水体紊动对黏性泥沙絮凝影响研究[J].水利学报,2013,44(1):67-72.
[42] 乔光全,张庆河,张金凤, 等.基于 XDLVO 理论的黏性泥沙絮凝模拟格子玻耳兹曼模型[J].天津大学学报,2013(3):232-238.
[43] 李云中,江玉姣.三峡水库坝前泥沙絮凝沉降实证分析[J].水利水电快报,2019,40(2):62-65,72.
[44] 海 希,邵宇阳,张健玮.动水条件下泥沙絮凝体粒径变化分析实验研究[J].科学技术与工程,2019,19(11):262-266.
[45] 乔光全,张金凤,张庆河, 等.紊动对黏性泥沙絮凝沉降影响的实验研究[J].天津大学学报,2014(9):811-816.
[46] WINTERWERP J C, MANNING A J, MARTENS C, et al. A Heuristic Formula for Turbulence-induced Flocculation of Cohesive Sediment[J]. Estuarine Coastal & Shelf Science, 2006, 68(1/2): 195-207.
[47] CHEN Shu-min,EISMA D. Fractal Geometry of In Situ Flocs in the Estuarine and Coastal Environments[J]. Netherlands Journal of Sea Research, 1995,33(2):173-182.
[48] SPICER P T, KELLER W, PRATSINIS S E. The Effect of Impeller Type on Floc Size and Structure during Shear-induced Flocculation[J]. Journal of Colloid & Interface ence, 1996, 184(1): 112-122.
[49] FEDER J. Fractals[M]. New York: Plenum, 1988: 31-38.
[50] TANG S,MA Y,SHIU C. Modelling the Mechanical Strength of Fractal Aggregates[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects,2001,180(1/2): 7-16.
[51] LAU Y L. Temperature Effect on Settling Velocity and Deposition of Cohesive Sediments[J]. Journal of Hydraulic Research, 1994, 32(1): 41-51.
[52] EISMA D, BERNARD P, CADÉE G C, et al. Suspended-matter Particle Size in Some West-European Estuaries Part I: Particle-size Distribution[J]. Netherlands Journal of Sea Research, 1991, 28(3): 193-214.
[53] BERHANE I, STERNBERG R W, KINEKE G C, et al. The Variability of Suspended Aggregates on the Amazon Continental Shelf[J]. Continental Shelf Research, 1997, 17(3): 267-285.
[54] GRILO C F, CHASSAGNE C, QUARESMA V D S, et al. The Role of Charge Reversal of Iron Ore Tailing Sludge on the Flocculation Tendency of Sediments in Marine Environment[J]. Applied Geochemistry, 2020, 117: 104606.
[55] 赵慧明. 泥沙颗粒生长生物膜后基本物理性质的实验研究[D]. 北京:清华大学, 2010.
PDF(1207 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map