To overcome the subjectity in determining the index parameters of surrounding rock by existing classification methods, six parameters, namely, uniaxial saturated compressive strength, integrity coefficient, volumetric joint number, groundwater, quality index RQD, and elastic longitudinal wave velocity of surrounding rock, were selected as evaluation indexes. Surrounding rock classification was carried out by using entropy weight extension matter-element theory and entropy weight cloud model mathematical analysis method, respectively. The rationality and accuracy of the two methods were verified by the data of surrounding rock classification in the design and construction stage of Longnan tunnel of Ganzhou-Shenzhen high-speed railway. Results manifested that entropy weight method could overcome subjectivity and avoid human interference in calculating the weight coefficient of evaluation index. The present two methods of surrounding rock classification are conducive to the development of intelligent and information-based surrounding rock classification.
Key words
tunnel egeineering /
classification of surrounding rock /
entropy method /
extension matter element theory /
cloud model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 王梦恕.我国隧道技术现状和未来发展趋势[J].安徽建筑, 2015,22(4):9-13.
[2] 韩永琦,王宁慧. 铁路隧道围岩白云岩分级探讨[J]. 铁道勘察,2017,43(5):5-7.
[3] BIENIAWSKI Z T. Engineering Rock Masses Classification[M]. New York: Wiley Inter Science, 1989.
[4] BARTON N, LIEN R, LUNDE J. Engineering Classification of Rock Masses for the Design of Tunnel Support[J]. Rock Mechanics, 1974, 6(4): 189-236.
[5] BARTON N.Some New Q-value Correlations to Assist in site Characterisation and Tunnel Design[J]. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(2): 185-216.
[6] HOSEINIE S H,AGHABABAEI H,POURRAHIMIANY.Development of a New Classification System for Assessing of Rock Mass Drillability Index (RDI)[J].International Journal of Rock Mechanics & Mining Sciences,2008,45(1):1-10.
[7] 何发亮,王石春.铁路隧道围岩分级方法研究及发展[J].铁道工程学报,2005(增刊1):392-397.
[8] 张顶立,台启民,房 倩.复杂隧道围岩安全性及其评价方法[J].岩石力学与工程学报,2017,36(2):270-296.
[9] 王寓霖,阳富强.基于熵权物元可拓模型的地下空间火灾安全评价[J].安全,2019,40(1):54-57,61.
[10] 黄 萍,徐晶晶.基于熵权物元可拓模型的煤矿透水安全评价[J].安全与环境工程,2017,24(6):144-148.
[11] 方诗圣,田海涛,黄德洲,等.基于熵权法-多维云模型的围岩稳定性分类研究[J].煤矿安全,2020,51(1):229-232.
[12] 卢庆喜. 隧道围岩质量分级与稳定性评价[D].北京:中国地质大学(北京),2016.
[13] 彭 潜. 某长大隧道地应力特征及围岩开挖稳定性分析[D].武汉:raybet体育在线
,2016.
[14] 许才仗.复杂地层大断面隧道围岩分级研究及施工参数优化[D].成都:西南交通大学,2011.
[15] GB 50218—2014,工程岩体分级标准[S].北京:中国计划出版社,2014.
[16] TB 10003—2016,铁路隧道设计规范[S] 。北京:中国铁道出版社,2016.