Essential Boundary Treatment of Three-dimensional Numerical Manifold Method

YANG Shi-kou, AI Hua-dong

Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (3) : 137-142.

PDF(1512 KB)
PDF(1512 KB)
Journal of Changjiang River Scientific Research Institute ›› 2022, Vol. 39 ›› Issue (3) : 137-142. DOI: 10.11988/ckyyb.20201243
HYDRAULIC STRUCTURE AND MATERIAL

Essential Boundary Treatment of Three-dimensional Numerical Manifold Method

  • YANG Shi-kou, AI Hua-dong
Author information +
History +

Abstract

In three-dimensional numerical manifold method, the problem of applying boundary displacement in arbitrary direction using penalty function is not yet clear, and multi-step loading would result in the accumulation of error. In view of this, the formulas in consideration of the boundary displacement conditions applied along a certain direction and the corresponding step loading conditions are derived by modifying the displacement boundary part of the governing equation of traditional three-dimensional numerical manifold method. The research is expected to expand the application of the governing equation in displacement boundary treatment and to reduce the cumulative effect of multi-step loading errors. Two typical examples are selected for numerical simulation and comparative analysis to verify the accuracy of the method. Results demonstrate that the calculation results of the proposed method are in good agreement with the analytical solutions, and the modified formula is applicable to the case of boundary displacement applied in different directions, and thus is strongly adaptable. The calculation accuracy with displacement boundary error correction is higher than that without error correction; with the increase of loading steps, the cumulative error with no error correction increases gradually, but that with error correction is unaffected.

Key words

three-dimensional numerical manifold method / essential boundary condition / penalty function method / multi-step loading / error correction

Cite this article

Download Citations
YANG Shi-kou, AI Hua-dong. Essential Boundary Treatment of Three-dimensional Numerical Manifold Method[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(3): 137-142 https://doi.org/10.11988/ckyyb.20201243

References

[1] SHI G H. Manifold Method of Material Analysis[C]//Transactions of the 9th Army Conference on Applied Mathematics and Computing. Minneapolis, Minnesota. June 18-21, 1991: 57-76.
[2] ZHENG H, XU D D. New Strategies for Some Issues of Numerical Manifold Method in Simulation of Crack Propagation[J]. International Journal for Numerical Methods in Engineering, 2014, 97(13): 986-1010.
[3] STROUBOULIS T, COPPS K, BABUSKA I. The Generalized Finite Element Method[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(32/33): 4081-4193.
[4] 蔡永昌, 朱合华. 在无单元法里直接准确施加位移边界条件和材料不连续条件[J]. 计算力学学报, 2004, 21(6): 740-745.
[5] 苏海东, 颉志强. 独立覆盖流形法的本质边界条件施加方法[J]. raybet体育在线 院报, 2017, 34(12): 140-146.
[6] MA G W, AN X M, HE L. The Numerical Manifold Method: A Review[J]. International Journal of Computational Methods, 2010, 7(1): 1-32.
[7] 李 伟, 郑 宏, 郭宏伟. 基于MLS-NMM的摩擦接触问题研究[J]. 工程力学, 2017, 34(11): 18-25.
[8] ZHANG X, LIU X, LU M W,et al. Imposition of Essential Boundary Conditions by Displacement Constraint Equations in Meshless Methods[J]. Communications in Numerical Methods in Engineering, 2001, 17(3): 165-178.
[9] WU C K C, PLESHA M E. Essential Boundary Condition Enforcement in Meshless Methods: Boundary Flux Collocation Method[J]. International Journal for Numerical Methods in Engineering, 2002, 53(3): 499-514.
[10]CAI Y C, ZHU H H. Direct Imposition of Essential Boundary Conditions and Treatment of Material Discontinuities in the EFG Method[J]. Computational Mechanics, 2004, 34(4): 330-338.
[11]MIHARA R, TAKEUCHI N. Material Nonlinear Analysis Using Hybrid-type Penalty Method Assumed Second Order Displacement Field[C]//Proceedings of the 7th International Conference on Analysis of Discontinuous Deformation. Honolulu, Hawaii, USA. December 10-12, 2005: 211-222.
[12]KOUREPINIS D, PEARCE C J, BICANIC N. Boundary Deformability and Convergence in the Higher-Order Numerical Manifold Method[C]//Proceedings of the 9th International Conference on Analysis of Discontinuous Deformation — New Development and Applications. Doi: 10.3850/9789810844554_9789810844554-0055.
[13]ZHENG H, LI W, DU X. Exact Imposition of Essential Boundary Condition and Material Interface Continuity in Galerkin-based Meshless Methods[J]. International Journal for Numerical Methods in Engineering, 2017, 110(7): 637-660.
[14]李 伟,郑 宏.基于数值流形法的渗流问题边界处理新方法[J].岩土工程学报,2017,39(10):1867-1873.
[15]YANG Y, GUO H, FU X, et al. Boundary Settings for the Seismic Dynamic Response Analysis of Rock Masses Using the Numerical Manifold Method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(9): 1095-1122.
[16]WEI W, ZHAO Q, JIANG Q,et al. Three New Boundary Conditions for the Seismic Response Analysis of Geomechanics Problems Using the Numerical Manifold Method[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 105: 110-122.
[17]WANG X, YUAN Z. A Novel Weak Form Three-dimensional Quadrature Element Solution for Vibrations of Elastic Solids with Different Boundary Conditions[J]. Finite Elements in Analysis and Design, 2018, 141: 70-83.
[18]姜清辉, 邓书申, 周创兵. 三维高阶数值流形方法研 究[J]. 岩土力学, 2006, 27(9): 1471-1474.
[19]JIANG Q, ZHOU C, LI D. A Three-dimensional Numerical Manifold Method Based on Tetrahedral Meshes[J]. Computers & Structures, 2009, 87(13/14): 880-889.
[20]李海枫, 张国新, 石根华, 等. 流形切割及有限元网格覆盖下的三维流形单元生成[J]. 岩石力学与工程学报, 2010, 29(4): 731-742.
[21]周小义,邓安福.六面体有限覆盖的三维数值流形方法的非线性分析[J].岩土力学,2010,31(7):2276-2282.
[22]杨石扣, 张继勋, 任旭华, 等. 三维数值流形法在裂纹扩展中的应用研究[J]. 岩土力学, 2016, 37(10): 3017-3025.
[23]YANG Y T, TANG X H, ZHENG H, et al. Three-dimensional Fracture Propagation with Numerical Manifold Method[J]. Engineering Analysis with Boundary Elements, 2016, 72: 65-77.
[24]杨石扣,张继勋,任旭华.基于数值流形法的三维裂纹扩展研究[J].岩土力学,2018,39(增刊1):488-494.
[25]YANG S K, CAO M S, REN X H, et al. 3D Crack Propagation by the Numerical Manifold Method[J]. Computers & Structures, 2018, 194: 116-129.
[26]徐芝纶. 弹性力学(上册)[M]. 北京: 高等教育出版社, 2006.
PDF(1512 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map