Distribution and Pollution Assessment of Phosphorus in Sediment of Yanglan Lake

ZHANG Wei, HU Yuan, TAO Jing-xiang, HUANG Hua-wei, WU Min

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (9) : 35-39.

PDF(3709 KB)
PDF(3709 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (9) : 35-39. DOI: 10.11988/ckyyb.20200754
WATER ENVIRONMENT AND WATER ECOLOGY

Distribution and Pollution Assessment of Phosphorus in Sediment of Yanglan Lake

  • ZHANG Wei1,2, HU Yuan1,2, TAO Jing-xiang1,2, HUANG Hua-wei1,2, WU Min1,2
Author information +
History +

Abstract

The eutrophication of urban lakes aggravates as the ecosystem function declines. Eutrophication of urban lakes is usually characterized by phosphorus limitation, while phosphorus mainly settles in sediments. Studying the content and distribution of phosphorus in lake sediments is of crucial significance to exploring its pollution status and controlling lake eutrophication. Yanglan Lake is a typical urban lake subjected to eutrophication in recent years. In this research, we took Yanglan Lake as a case study to probe into the content and spatial distribution of total phosphorus (TP) in surface sediments and assessed the status of phosphorus pollution by using single factor index method. Furthermore, we also examined the morphology and vertical distribution of phosphorus in sediments in three representative regions. We found that the TP concentration in surface sediments of Yanglan Lake ranged from 528 to 3 568 mg/kg, averaging 1 096 mg/kg. The west of the lake saw the highest TP concentration, averaging 1 362 mg/kg. The pollution index of TP in surface sediments ranged between 0.88 and 5.95, implying that the sediments in the whole lake area were polluted with phosphorus to different degrees. The lightly polluted area accounted for 9.38% of the whole lake area, moderately polluted area 32.81% and severely polluted area 57.81%. In addition, the proportion of exchangeable phosphorus was relatively small, whereas the proportion of Fe/Al bonded phosphorus in the sediments was the highest, which was the major source of phosphorus release in the sediments of Yanglan Lake.

Key words

urban lake / surface sediments / TP / distribution characteristics / pollution assessment / Yanglan Lake

Cite this article

Download Citations
ZHANG Wei, HU Yuan, TAO Jing-xiang, HUANG Hua-wei, WU Min. Distribution and Pollution Assessment of Phosphorus in Sediment of Yanglan Lake[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(9): 35-39 https://doi.org/10.11988/ckyyb.20200754

References

[1] 沈颜奕, 陈 星. 城市湖泊生态系统健康评价与修复研究[J].水资源与水工程学报, 2017, 28(2): 82-85.
[2] 陈彦熹, 牛志广, 张宏伟, 等. 基于AQUATOX的景观水体水生态模拟及生态修复[J]. 天津大学学报(自然科学与工程技术版), 2012, 45(1):29-35.
[3] 蔡龙炎, 李 颖, 郑子航. 我国湖泊系统氮磷时空变化及对富营养化影响研究[J].地球与环境, 2010, 38(2):235-241.
[4] 孔范龙, 郗 敏, 徐丽华, 等. 富营养化水体的营养盐限制性研究综述[J]. 地球环境学报, 2016, 7(2): 121-129.
[5] 柏 祥, 陈开宁, 任奎晓, 等. 不同水深条件下狐尾藻生长对沉积物氮磷的影响[J]. 生态环境学报, 2011, 20(6):1086-1091.
[6] 鲍林林, 李叙勇. 河流沉积物磷的吸附释放特征及其影响因素[J].生态环境学报, 2017, 26(2):350-356.
[7] 王 佩, 卢少勇, 王殿武, 等. 太湖湖滨带底泥氮、磷、有机质分布与污染评价[J].中国环境科学, 2012, 32(4) :703-709.
[8] SHEN Q S,LIU C,ZHOU Q L,et al.Effects of Physical and Chemical Characteristics of Surface Sediments in the Formation of Shallow Lake Algae-induced Black Bloom[J]. Journal of Environmental Sciences, 2013, 25(12): 2353-2360.
[9] 郑阳华, 邹浩东, 何 强, 等. 水动力条件对沉积物-水界面氧通量的影响[J]. 湖泊科学,2018, 30(6):84-91.
[10] 陈晓玲, 张 媛, 张 琍, 等. 丰水期鄱阳湖水体中氮磷含量分布特征[J]. 湖泊科学, 2013, 25(5):643-648.
[11] 秦伯强. 长江中下游浅水湖泊富营养化发生机制与控制途径初探[J]. 湖泊科学, 2002, 14(3): 193-202.
[12] 李如忠, 刘科峰, 钱 靖, 等. 合肥市区典型景观水体氮磷污染特征及富营养化评价[J]. 环境科学, 2014, 35(5): 1718-1726.
[13] 田 伟, 杨周生, 邵克强, 等. 城市湖泊水环境整治对改善水质的影响:以蠡湖近30年水质变化为例[J]. 环境科学, 2020, 41(1): 183-193.
[14] 朱 喜, 胡明明, 朱金华, 等. 巢湖水环境综合治理思路和措施[J]. 水资源保护, 2016, 32(1):120-124, 141.
[15] 苗 慧, 沈 峥, 蒋 豫, 等. 巢湖表层沉积物氮、磷、有机质的分布及污染评价[J].生态环境学报, 2017, 26(12): 2120-2125.
[16] 魏伟伟, 叶 春, 李春华. 太湖竺山湾缓冲带内湿地表层沉积物氮、磷和有机质的分布特征及评价[J]. 环境污染与防治, 2018, 40(5): 588-591.
[17] 王书锦, 刘云根, 张 超, 等. 洱海流域入湖河口湿地沉积物氮、磷、有机质分布及污染风险评价[J]. 湖泊科学, 2017, 29(1): 69-77.
[18] 熊 强, 焦立新, 王圣瑞, 等. 滇池沉积物有机磷垂直分布特征及其生物有效性[J]. 环境科学, 2014, 35(11): 4118-4126.
[19] 何 佳,陈春瑜,邓伟明, 等. 滇池水-沉积物界面磷形态分布及潜在释放特征[J].湖泊科学, 2015, 27(5): 799-810.
[20] 李 乐, 王圣瑞, 焦立新, 等. 滇池柱状沉积物磷形态垂向变化及对释放的贡献[J]. 环境科学, 2016, 37(9): 3384-3393.
[21] 向速林, 周文斌. 鄱阳湖沉积物中磷的赋存形态及分布特征[J]. 湖泊科学, 2010, 22(5): 649-654.
[22] 韩 璐, 黄岁樑, 王乙震. 海河干流柱芯不同粒径沉积物中有机质和磷形态分布研究[J]. 农业环境科学学报, 2010, 29(5): 955-962.
[23] 许春雪, 袁 建, 王亚平, 等. 沉积物中磷的赋存形态及磷形态顺序提取分析方法[J]. 岩矿测试, 2011, 30(6): 785-794.
[24] RUBAN V,LOPEZ-SANCHEZ J F,PARDO P,et al. Development of a Harmonised Phosphorus Extraction Procedure and Certification of a Sediment Reference Material[J]. Journal of Environmental Monitoring,2001,3:121-125.
[25] RUBAN V, LÓPEZ-SÁNCHEZ J F, PARDO P, et al. Selection and Evaluation of Sequential Extraction Procedures for the Determination of Phosphorus Forms in Lake Sediment[J]. Journal of Environmental Monitoring, 1999, 1(1): 51-56.
[26] 邱祖凯, 胡小贞, 姚 程, 等. 山美水库沉积物氮磷和有机质污染特征及评价[J]. 环境科学, 2016, 37(4):1389-1396.
[27] 张紫霞, 刘 鹏, 王 妍, 等. 普者黑岩溶湿地干湿季沉积物氮、磷、有机质分布及污染风险评价[J]. 环境科学学报, 2019, 39(12): 4088-4095.
[28] 杨 洋, 刘其根, 胡忠军, 等. 太湖流域沉积物碳氮磷分布与污染评价[J]. 环境科学学报, 2014, 34(12): 3057-3064.
[29] 杜奕衡,刘 成,陈开宁,等.白洋淀沉积物氮磷赋存特征及其内源负荷[J].湖泊科学,2018,30(6):69-83.
[30] LI Y, XIE P, ZHAO D D, et al. Eutrophication Strengthens the Response of Zooplankton to Temperature Changes in a High-Altitude Lake[J]. Ecology and Evolution, 2016, 6(18): 6690-6701.
PDF(3709 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map