Analysis of Monthly Precipitation Characteristics of Ankang Station in Upper Hanjiang River from 1950 to 2014 Based on Chaos Theory

ZHAO Zi-yang, WANG Hong-rui, ZHAO Yan, HU Li-tang, LIU Hai-jun

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (7) : 137-142.

PDF(3797 KB)
PDF(3797 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (7) : 137-142. DOI: 10.11988/ckyyb.20210007
SPECIAL COLUMN OF SCITECH INNOVATION FOR THE REGULATION AND PROTECTION OFCHANGJIANG RIVER: PROCEEDINGS OF THE 2020 ANNUAL MEETING OF CHANGJIANGTECHNOLOGY AND ECONOMY SOCIETY

Analysis of Monthly Precipitation Characteristics of Ankang Station in Upper Hanjiang River from 1950 to 2014 Based on Chaos Theory

  • ZHAO Zi-yang1,2, WANG Hong-rui1,2, ZHAO Yan1,2, HU Li-tang1,3, LIU Hai-jun1,2
Author information +
History +

Abstract

By analyzing the monthly precipitation trend of Ankang Station from 1950 to 2014, we found that the precipitation at Ankang changes periodically. Having determined the delay time and embedded dimension of the nonlinear system of precipitation at Ankang using autocorrelation function method and C-C correlation integral method, we reconstructed the phase space of the precipitation series, and identified the chaotic characteristics of precipitation by using the G-P correlation dimension method and the maximum Lyapunov exponent method. Results reveal that the G-P correlation dimension algorithm indicates no chaos, while the maximum Lyapunov exponent method suggests chaos. With the existing 780 monthly precipitation data, we can forecast up to seven months of precipitation. The research finding offers scientific support for the runoff forecast in Hanjiang River and its downstream areas.

Key words

precipitation characteristics / chaos theory / C-C method / G-P correlation dimension / forecast time scale / Ankang Station in upper Hanjiang River

Cite this article

Download Citations
ZHAO Zi-yang, WANG Hong-rui, ZHAO Yan, HU Li-tang, LIU Hai-jun. Analysis of Monthly Precipitation Characteristics of Ankang Station in Upper Hanjiang River from 1950 to 2014 Based on Chaos Theory[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(7): 137-142 https://doi.org/10.11988/ckyyb.20210007

References

[1] LORENZ E N. Deterministic Nonperodic Flow[J]. Journal of the Atmospheric Sciences, 1963, 20: 130-141.
[2] HENSE A. On the Possible Existence of a Strange Attractor for the Southern Oscillation[J]. Beiträge zur Physik der Atmosphäre, 1987, 60(1):34-47.
[3] JAYAWARDENA A W, LAI F. Analysis and Prediction of Chaos in Rainfall and Stream Flow Time Series[J]. Journal of Hydrology, 1994, 153(1/2/3/4): 23-52.
[4] SIVAKUMAR B, LIONG S Y, LIAW C Y. Evidence of Chaotic Behavior in Singapore Rainfall[J]. Journal of the American Water Resources Association, 1998, 34 (2): 301-310.
[5] SIVAKUMAR B, LIONG S Y, LIAW C Y, et al. Singapore Rainfall Behavior: Chaotic?[J]. Journal of Hydrologic Engineering, 1999, 4(1): 38-48.
[6] SIVAKUMAR B, PHOON K K, LIONG S Y, et al. Comment on “Nonlinear Analysis of Riverflow Time Series” by Amilcare Porporato and Luca Ridolfi[J]. Water Resources Research, 1999, 35(3): 895-897.
[7] SIVAKUMAR B, PHOON K K, LIONG S Y, et al. A Systematic Approach to Noise Reduction in Observed Chaotic Time Series[J]. Journal of Hydrology, 1999, 219 (3/4): 103-135.
[8] WAELBROECK H, LOPEZPENA R, MORALES T, et al. Prediction of Tropical Rainfall by Local Phase Space Reconstruction[J]. Journal of the Atmospheric Sciences, 2010, 51(22):3360-3364.
[9] 王红瑞, 宋 宇, 刘昌明,等. 混沌理论及在水科学中的应用与存在的问题[J]. 水科学进展, 2004, 15(3):400-407.
[10] 王 文,许武成.对水文时间序列混沌特征参数估计问题的讨论[J]. 水科学进展,2005,16(4): 609-616.
[11] DE DOMENICO M, GHORBANI M A, MAKARYNSKYY O, et al. Chaos and Reproduction in Sea Level[J]. Applied Mathematical Modelling, 2013, 37(6):3687-3697.
[12] WANG W C, CHAU K W, XU D M, et al. Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition[J]. Water Resources Management, 2015, 29(8): 2655-2675.
[13] ZOUNEMAT-KERMANI M. Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge[J]. Water Resources Management, 2016, 30(5):1851-1865.
[14] 王志力,耿艳芬,金 生.安康枢纽下游非恒定流数学模型研究[J]. raybet体育在线 院报,2005,22(5):4-7.
[15] 贾志峰,付恒阳,王建莹,等.短期降雨预报失误对安康水库防洪预报调度的影响[J]. raybet体育在线 院报,2013,30(7):29-32.
[16] 卢修富. 安康市水文特性[J]. 水资源与水工程学报, 2009, 20(4):154-157.
[17] VAMOŞ C. Automatic Algorithm For Monotone Trend Removal[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2007, 75(3): 036705.
[18] GRASSBERGER P, PROCACCIA I. Measuring the Strangeness of Strange Attractors[J]. Physica D: Nonlinear Phenomena, 1983, 9(1/2):189-208.
[19] KIM H S, EYKHOLT R, SALAS J D. Nonlinear Dynamics, Delay Times, and Embedding Windows[J]. Physica D Nonlinear Phenomena, 1999, 127(1/2): 48-60.
[20] CASDAGLI M.Chaos and Deterministic versus Stochastic Nonlinear Modelling[J]. Journal of the Royal Statistical Society:Series B (Methodologica),1992,54(2):303-328.
[21] 张 宾,李 月,卢 金.Lyapunov特性指数用于混沌判据[J]. 吉林大学学报(信息科学版),2004(2):111-114.
[22] 李鸿雁, 姜 珊, 李 鹏. 嫩江流域径流的可预报性及其时间尺度分析[J]. 水文, 2009, 29(6):20-23,27.
PDF(3797 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map