Triaxial Mechanical Properties and Strength Prediction Model of Mica Quartz Schist under Freezing-thawing Cycles

SHEN Xiao-ke, ZHU Jie-bing, WANG Xiao-wei, WANG Bin, LI Cong

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (3) : 83-89.

PDF(2697 KB)
PDF(2697 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (3) : 83-89. DOI: 10.11988/ckyyb.201914282021
ROCK-SOIL ENGINEERING

Triaxial Mechanical Properties and Strength Prediction Model of Mica Quartz Schist under Freezing-thawing Cycles

  • SHEN Xiao-ke1, ZHU Jie-bing1, WANG Xiao-wei1,2, WANG Bin1, LI Cong1
Author information +
History +

Abstract

The aim of this research is to explore the influence of freeze-thaw cycles on the physical-mechanical properties of mica quartz schist. Freezing-thawing test (0, 25, 50, 75, and 100 freezing-thawing cycles) was conducted on water-saturated mica quartz schist specimens and also conventional triaxial compression test was carried out under four levels of confining pressure. The dynamic elastic parameters, the failure mode caused by triaxial compression and the change rule of triaxial compressive strength were examined. Test results are presented as follows: 1) with the increase of freeze-thaw cycles, the triaxial compressive strength, dynamic elastic modulus, dynamic shear modulus and dynamic bulk modulus declined exponentially, while cohesion and internal friction angle decreased linearly. 2) Along with the proceeding of cyclic freezing and thawing, the boosting effect of confining pressure on the strength of samples were gradually weakened, whereas the deterioration effect of freezing-thawing cycles on the strength of samples became more prominent. 3) Under cyclic freezing and thawing, the triaxial compression failure pattern of mica quartz schist altered from tension failure to shear failure along schistose plane. 4) In addition, on the basis of the Jaeger failure criterion, a triaxial compressive strength prediction model for oblique schistosed mica quartz schist was established with the number of freezing-thawing cycle, the inclination of schistose plane, and confining pressure as control parameters. The prediction results were in good agreement with measured data.

Key words

mica quartz schist / freezing-thawing cycles / mechanical properties of rock / triaxial compression / schistosity plane / compressive strength

Cite this article

Download Citations
SHEN Xiao-ke, ZHU Jie-bing, WANG Xiao-wei, WANG Bin, LI Cong. Triaxial Mechanical Properties and Strength Prediction Model of Mica Quartz Schist under Freezing-thawing Cycles[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(3): 83-89 https://doi.org/10.11988/ckyyb.201914282021

References

[1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3):433-454.
[2] 王绍令. 青藏公路风火山地区的热融滑塌[J]. 冰川冻土, 1990,12(1): 63-70.
[3] ZHU C, ZHANG J, CHENG P. Rock Glaciers in the Central Tianshan Mountains, China[J]. Permafrost & Periglacial Processes, 2015, 7(1): 69-78.
[4] 杨艳霞,祝艳波,李 才. 南方极端冰雪灾害条件下边坡崩塌机理初步研究[J]. 人民长江, 2012, 43(2): 46-49.
[5] 靳德武. 青藏高原多年冻土区斜坡稳定性研究[D]. 西安:长安大学, 2004.
[6] 徐光苗,刘泉声. 岩石冻融破坏机理分析及冻融力学试验研究[J]. 岩石力学与工程学报, 2005,24(17): 3076-3082.
[7] 闻 磊, 李夕兵, 苏 伟. 冻融循环影响下金属矿山边坡坚硬岩石物理力学性质研究[J]. 采矿与安全工程学报, 2015, 32(4):689-696.
[8] 陈招军, 王乐华, 王思敏,等. 冻融循环条件下岩石加卸荷力学特性研究[J]. raybet体育在线 院报, 2017,34(1):98-103.
[9] 朱珍德,麦尔江·麦麦提玉苏普, 方若进,等. 冻融循环作用下砂岩卸荷强度特性试验及损伤特性研究[J]. raybet体育在线 院报, 2018, 35(3): 1-5.
[10] 李杰林,周科平,柯 波. 冻融后花岗岩孔隙发育特征与单轴抗压强度的关联分析[J]. 煤炭学报, 2015, 40(8): 1783-1789.
[11] JAEGER J C. Shear Failure of Anistropic Rocks[J]. Geological Magazine, 1960, 97(1): 65-72.
[12] TIEN Y M, TSAO P F. Preparation and Mechanical Properties of Artificial Transversely Isotropic Rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(6):1001-1012.
[13] TIEN Y M, KUO M C, JUANG C H. An Experimental Investigation of the Failure Mechanism of Simulated Transversely Isotropic Rocks[J].International Journal of Rock Mechanics and Mining Sciences,2006,43(8):1163-1181.
[14] WENG M C, JENG F S, HSIEH Y M, et al. A Simple Model for Stress-induced Anisotropic Softening of Weak Sandstones[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2):155-166.
[15] 张玉军, 刘谊平. 层状岩体抗剪强度的方向性及剪切破坏面的确定[J]. 岩土力学, 2001, 22(3):254-257.
[16] 刘卡丁,张玉军.层状岩体剪切破坏面方向的影响因素[J].岩石力学与工程学报,2002,21(3):335-339.
[17] 王兵武, 李银平, 杨春和,等. 界面倾角对复合层状物理模型材料力学特性的影响研究[J]. 岩土力学, 2015(增刊2):139-147.
[18] 王 哲,马淑芝,席人双,等. 云母石英片岩强度的各向异性特征研究[J]. 安全与环境工程, 2018, 25(2): 160-165.
[19] 王永刚,丁文其,贾善坡,等. 考虑结构面特性的层状岩体各向异性模型[J]. 公路交通科技, 2014, 31(10): 85-92.
[20] 雷 霆,夏 磊,王秋良,等. 层状岩体的颗粒流模拟新方法及数值分析[J]. 科学技术与工程, 2017, 17(2): 256-261.
[21] 孙清佩,张志镇,杜雷鸣,等. 层理倾角对岩石力学与声发射特征的影响研究[J]. 金属矿山, 2017(2): 7-13.
[22] SL 264—2001,水电水利工程岩石试验规程[S]. 北京:中国水利水电出版社,2001.
[23] 王章琼, 晏鄂川. 物质组构特征对片岩冻融损伤劣化的影响[J]. 岩土工程学报, 2015, 37(增刊2):86-90.
[24] 闻 磊,李夕兵,尹彦波, 等.冻融循环作用下花岗斑岩和灰岩物理力学性质对比分析及应用研究[J].冰川冻土,2014,36(3):632-639.
[25] 闻 磊, 李夕兵, 苏 伟. 冻融循环影响下金属矿山边坡坚硬岩石物理力学性质研究[J]. 采矿与安全工程学报, 2015, 32(4):689-696.
[26] 李杰林, 周科平, 柯 波. 冻融后花岗岩孔隙发育特征与单轴抗压强度的关联分析[J]. 煤炭学报, 2015, 40(8):1783-1789.
[27] 王家兴. 石英云母片岩各向异性特征及其对围岩稳定性影响的研究[D].成都:成都理工大学, 2014.
[28] 左双英, 史文兵, 梁 风, 等. 层状各向异性岩体破坏模式判据数值实现及工程应用[J]. 岩土工程学报, 2015, 37(增刊1):191-196.
[29] 刘 廷, 张家铭, 徐晓波, 等. 三轴压缩下云母片岩强度和变形特性试验研究[J]. 工程勘察, 2013, 41(1):5-9.
PDF(2697 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map