Dynamic Parameters of Saturated Silt Containing Clays under Freeze-Thaw Cycles

CUI Gao-hang, ZHU Cheng-hao

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (3) : 77-82.

PDF(1569 KB)
PDF(1569 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (3) : 77-82. DOI: 10.11988/ckyyb.202004862021
ROCK-SOIL ENGINEERING

Dynamic Parameters of Saturated Silt Containing Clays under Freeze-Thaw Cycles

  • CUI Gao-hang, ZHU Cheng-hao
Author information +
History +

Abstract

To study the dynamic characteristics of saturated silty sand containing clays in frigid zone, cyclic triaxial tests were carried out on the saturated silty sand containing clays from the floodplain of Songhua River. The effects of environmental factors such as freeze-thaw cycle, dynamic stress amplitude, effective confining pressure and load frequency on the dynamic shear modulus and damping ratio of the saturated silty sand were examined. Results demonstrate that the dynamic shear modulus and damping ratio of saturated silty sand, which do not change in a single way in different freeze-thaw cycles, are significantly affected by the freeze-thaw cycle. The dynamic shear modulus of saturated silty sand which does not undergo freeze-thaw cycles increases with the increase of dynamic stress amplitude, effective confining pressure and load frequency, and the damping ratio declines with the rising of dynamic stress amplitude, effective confining pressure and load frequency. Moreover, an empirical formula is proposed to predict the dynamic shear modulus and damping ratio of silty sand under different conditions. The research results offer reference for the stability and safety design of silty sand in subgrade engineering.

Key words

freeze-thaw cycle / silt containing clays / cyclic triaxial test / dynamic shear modulus / damping ratio

Cite this article

Download Citations
CUI Gao-hang, ZHU Cheng-hao. Dynamic Parameters of Saturated Silt Containing Clays under Freeze-Thaw Cycles[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(3): 77-82 https://doi.org/10.11988/ckyyb.202004862021

References

[1] 郑 郧, 马 巍, 邴 慧. 冻融循环对土结构性影响的试验研究及影响机制分析[J]. 岩土力学, 2015, 36(5): 1282-1287,1294.
[2] ZHANG De, LI Quan-ming, LIU En-long, et al. Dynamic Properties of Frozen Silty Soils with Different Coarse-grained Contents Subjected to Cyclic Triaxial Loading[J]. Cold Regions Science and Technology, 2018, 157(22): 64-85.
[3] 董正方, 翟鹏飞, 曾繁凯, 等. 黄泛区粉砂土动剪切模量和阻尼比试验研究[J]. 河南大学学报(自然科学版), 2020, 50(3): 332-340.
[4] 常 丹, 刘建坤, 李 旭, 等. 冻融循环对青藏粉砂土力学性质影响的试验研究[J]. 岩石力学与工程学报, 2014, 33(7): 1496-1502.
[5] 严 晗, 王天亮, 刘建坤, 等. 反复冻融条件下粉砂土动力学参数试验研究[J]. 岩土力学, 2014, 35(3): 683-688.
[6] 崔广芹, 尚志成, 秦 迪. 基于冻融循环试验的季节性冻土区边坡稳定性分析[J]. raybet体育在线 院报, 2018, 35(8): 102-105,111.
[7] 张向东, 任 昆, 刘家顺. 不同冻结条件下辽西风积砂土动力参数试验研究[J]. 冰川冻土, 2020, 42(4): 1229-1237.
[8] GB 50021—2001,岩土工程勘察规范[S]. 北京: 中国建筑工业出版社, 2001.
[9] JTG E40—2007,公路土工试验规程[S]. 北京: 人民交通出版社, 2007.
[10] TB 10001—2016,铁路路基设计规范[S]. 北京: 中国铁道出版社, 2016.
[11] 汪恩良, 张安琪, 包天鹅, 等. 寒区不同材质垂直埋管土壤冻结深度测量差异性分析[J]. 水利学报, 2017, 48(1): 86-95.
[12] 崔高航, 陶夏新, 陈宪麦. 轨道交通引起地面环境振动最小二乘法分析[J]. 哈尔滨工业大学学报, 2008, 40(8): 1184-1188.
[13] 肖军华. 提速列车荷载下粉土的力学响应与路基稳定性研究[D]. 北京: 北京交通大学, 2008.
[14] 王子玉. 深季节冻土区列车荷载下路基振动响应特性与永久变形研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
[15] KOKUSHO T. Liquefaction Potential Evaluations: Energy-based Method Versus Stress-based Method[J]. Canadian Geotechnical Journal, 2013, 50(10):1088-1099.
[16] LIN Bo, ZHANG Feng, FENG De-cheng, et al. Dynamic Shear Modulus and Damping Ratio of Thawed Saturated Clay under Long-term Cyclic Loading[J]. Cold Regions Science and Technology, 2018, 145(1): 93-105.
[17] 于啸波. 季节冻土动剪切模量阻尼比试验研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2016.
[18] 于景飞, 张文月, 李明浩.季节性冻土区铁路路基冻融变形规律[J].raybet体育在线 院报,2020,37(5):133-138.
[19] HARDIN B O, DRNEVICH V P. Shear Modulus and Damping in Soils: Design Equations and Curves[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(7): 92-667.
[20] HARDIN B O, DRNEVICH V P. Shear Modulus and Damping in Soils: Measurements and Parameter Effect[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(6): 24-603.
PDF(1569 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map