With the flood peak and flood volume of Gangnan reservoir as a case study, the “OR” return periods, “AND” return periods, Kendall return periods (hereinafter referred to as KRP) and survival Kendall return periods (SKRP) of bivariate joint distribution were computed by using the optimally fitted Gumbel copula. The joint design quantiles in a bivariate environment was calculated based on the maximum likelihood method, conditional most likely combination, and bivariate equivalent frequency combination. The main conclusions of this study are summarized as follows: (1) The traditional “AND” and “OR” approach in multivariate return periods definition is limited in identifying safe and dangerous regions, while the KRP based approach would be more rational, but the safe region of KRP is unbounded, which is inconsistent with reality. As specific features, the proposed approach of SKRP yields a bounded safe region (a natural request in applications), where all the variables of interest are finite and limited. Consequently, the SKRP is logically the most reasonable. (2) The design values calculated using these three methods see no considerable difference, but from the point of view of simplicity and practicality, the bivariate equivalent frequency combination is recommended. (3) The design values based on the return period definitions differ obviously, among which OR return period yields the maximum design value, followed by SKRP, KRP, and AND in sequence. (4) SKRP is recommended for bivariate flood design because of its rigorous theoretical basis, and its design results give consideration to both safety and economy. (5) The difference between bivariate joint design value and univariate design value is greatly affected by the correlation between variables. The weaker the correlation between variables, the greater the difference. In summary, KRP based bivariate equivalent frequency combination is currently the more scientific and rational approach to the joint design of flood peak and volume.
Key words
flood /
flood volume /
Kendall function /
Copula /
return period
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 宋松柏. Copula函数在水文多变量分析计算中的问题[J]. 人民黄河, 2019, 41(10): 40-47,57.
[2] SKLAR M. Functions de Repartition a n Dimensions et Leurs Marges[J]. Publ. Inst. Statist. Univ. Paris, 1959(8): 229-231.
[3] GENEST C, MACKAY J. The Joy of Copulas: Bivariate Distributions with Uniform Marginals[J]. The American Statistician, 1986, 40(4): 280-283.
[4] HARRY J. Parametric Families of Multivariate Distributions with Given Margins[J]. Journal of Multivariate Analysis, 1993, 46(2): 262-282.
[5] NELSEN R B. An Introduction to Copulas[M]. New York: Springer, 1999.
[6] HOFERT M, KOJADINOVIC I, YAN J, et al. Elements of Copula Modeling with R[M]. New York: Springer, 2018.
[7] 陈 浩, 徐宗学, 班春广, 等. 基于Copula函数的深圳河流域降雨潮位组合风险分析 [J]. 北京师范大学学报(自然科学版), 2020, 56(2): 307-314.
[8] 冯瑞瑞, 荣艳淑, 吴福婷. 基于Copula函数的宜昌水文干旱特征分析 [J]. 水文, 2020, 40(2): 23-30,71.
[9] 龙瑞昊, 畅建霞, 张鸿雪, 等. 基于Copula的澜沧江流域气象干旱风险分析 [J]. 北京师范大学学报(自然科学版), 2020, 56(2): 265-274.
[10]SHAGUFTA A, JANGA R M. Non-stationarity Analysis of Flood Flows Using Copula Based Change-point Detection Method: Application to Case Study of Godavari River Basin[J]. Science of the Total Environment, 2020, 718: 134894.
[11]洪兴骏, 郭生练, 李天元. 基于Copula函数的鄱阳湖都昌站枯水多变量频率分析[J]. raybet体育在线
院报, 2014, 31(12): 11-16.
[12]郭生练, 刘章君, 熊立华. 设计洪水计算方法研究进展与评价[J]. 水利学报, 2016, 47(3): 302-314.
[13]GRALER B, DEN BERG M J V, VANDENBERGHE S, et al. Multivariate Return Periods in Hydrology: A Critical and Practical Review Focusing on Synthetic Design Hydrograph Estimation[J]. Hydrology Earth System Sciences, 2012, 17(4): 1281-1296.
[14]黄 强, 陈子燊. 基于二次重现期的多变量洪水风险评估[J]. 湖泊科学, 2015, 27(2): 352-360.
[15]陈子燊, 施伟勇, 路剑飞. 波高周期联合分布四种重现水平对比分析[J]. 热带海洋学报, 2018, 37(4): 18-23.
[16]陈子燊, 刘占明, 赵 青. 洪水峰量联合分布的4种重现水平对比[J]. 中山大学学报(自然科学版), 2018, 57(1): 130-135.
[17]SALVADORI G, DE MICHELE C J W R R. Frequency Analysis via Copulas: Theoretical Aspects and Applications to Hydrological Events[J]. Water Resources Research, 2004, 40(12), doi: 10.1029/2004WR003133.
[18]SALVADORI G, DE MICHELE C, DURANTE F. On the Return Period and Design in a Multivariate Framework[J]. Hydrology Earth System Sciences, 2011, 15(11): 3293-3305.
[19]卢韦伟, 陈 璐, 周建中,等. 基于多元分布函数的区域洪水频率分析[J]. 水文, 2015, 35(5): 6-10.
[20]陈子燊, 黄 强, 刘曾美. 基于非对称Archimedean Copula的三变量洪水风险评估[J]. 水科学进展, 2016, 27(5): 763-771.
[21]涂新军, 杜奕良, 陈晓宏, 等. 滨海城市雨潮遭遇联合分布模拟与设计[J]. 水科学进展, 2017, 28(1): 49-58.
[22]尹家波, 郭生练, 刘章君, 等. 设计洪水峰量最可能组合法的计算通式[J]. 工程科学与技术, 2017, 49(2): 69-76.
[23]涂新军, 陈晓宏, 赵 勇, 等. 变化环境下东江流域水文干旱特征及缺水响应[J]. 水科学进展, 2016, 27(6): 810-821.
[24]史黎翔, 宋松柏. 基于Copula函数的两变量洪水重现期与设计值计算研究[J]. 水力发电学报, 2015, 34(10): 27-34.
[25]晋 恬, 闻 昕, 方国华, 等. 不同重现期标准双变量设计洪水计算方法[J]. 水利水电科技进展, 2018, 38(4): 7-13.
[26]刘章君, 郭生练, 钟逸轩,等. 基于Copula函数的入库洪水与坝址洪水关系研究[J]. 水文, 2016, 36(5): 1-7.
[27]XU C, YIN J, GUO S, et al. Deriving Design Flood Hydrograph Based on Conditional Distribution: A Case Study of Danjiangkou Reservoir in Hanjiang Basin[J]. Mathematical Problems in Engineering, 2016, doi: 10.1155/2016/4319646.
[28]张丽娟, 陈晓宏, 叶长青, 等. 考虑历史洪水的武江超定量洪水频率分析[J]. 水利学报, 2013, 44(3): 268-275.
[29]熊立华, 郭生练, 江 聪. 非一致性水文概率分布估计理论和方法[M]. 北京: 科学出版社, 2018.
[30]GENEST C, REMILLARD B, BEAUDOIN D. Goodness-of-Fit Tests for Copulas: A Review and a Power Study[J]. Insurance Mathematics Economics, 2009, 44(2): 199-213.