Intelligent Evaluation of Interlayer Bonding Quality of RCC Dam

XING Yue, TIAN Zheng-hong, DU Hui

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (8) : 142-149.

PDF(5777 KB)
PDF(5777 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (8) : 142-149. DOI: 10.11988/ckyyb.20190644
HYDRAULIC STRUCTURE AND MATERIAL

Intelligent Evaluation of Interlayer Bonding Quality of RCC Dam

  • XING Yue, TIAN Zheng-hong, DU Hui
Author information +
History +

Abstract

An intelligent evaluation method for the interlayer bonding quality of roller compacted concrete (RCC) dam is proposed in the light of reliable evaluation and dynamic control of interlayer bonding quality of RCC dam. (1) An evaluation indicator system with moisture content and compaction degree of RCC thermal layers as evaluation parameters and splitting tensile strength at 90 d-age of RCC core samples as evaluation target is established to reasonably characterize the interlayer bonding quality in the field. (2) The inverse distance weighted (IDW) interpolation method was employed to simulate the discrete parameters obtained by sampling detection with self-developed intelligent devices in the entire work area of RCC dam, and the spatial uncertainty was analyzed quantitatively by comparing the parameter simulation accuracy of sample sequences with different quantities and different mesh sizes. (3) The intelligent evaluation model for the interlayer bonding quality was established based on Bagging algorithm integrated with back-propagation artificial neural network (BP-ANN). The model was applied to the dynamic evaluation of the interlayer bonding quality of a typical construction warehouse of Wunonglong RCC Dam. Results suggest that the present method accurately and dynamically evaluates the interlayer bonding quality in consideration of spatial uncertainty, and also integrates the intelligent perception, transmission and evaluation of construction information.

Key words

RCC dam / interlayer bonding quality / intelligent evaluation / Bagging / BP neural network

Cite this article

Download Citations
XING Yue, TIAN Zheng-hong, DU Hui. Intelligent Evaluation of Interlayer Bonding Quality of RCC Dam[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(8): 142-149 https://doi.org/10.11988/ckyyb.20190644

References

[1] DL/T 5112—2000,水工碾压混凝土施工规范[S]. 北京:中国电力出版社,2000.
[2] MADHKHAN M, ARASTEH A. Evaluation of Bond Strength in Roller Compacted Concrete under Various Normal Pressures [J]. WIT Transactions on the Built Environment, 2006, 85: 269-277.
[3] CHUN S H, KIM K J, GREENE J, et al. Evaluation of Interlayer Bonding Condition on Structural Response Characteristics of Asphalt Pavement Using Finite Element Analysis and Full-scale Field Tests[J]. Construction and Building Materials, 2015, 96: 307-318.
[4] 杨华全,周守贤,邝亚力.三峡工程碾压混凝土层面结合性能试验研究[J].raybet体育在线 院报,1996,13(4):29-32,45.
[5] 姜荣梅,覃理利,李家健.龙滩大坝碾压混凝土层间结合质量识别标准[J].水力发电,2005,31(4):53-56.
[6] 姜福田.碾压混凝土坝现场层间允许间隔时间测定方法的研究[J].水力发电,2008,34(2):74-77.
[7] 周 浪,陈国胜,王晓军.彭水水电站碾压混凝土原位抗剪试验研究[J].raybet体育在线 院报,2009,26(8):76-79,83.
[8] 娄亚东. 碾压混凝土层面处理对层间结合性能影响研究[D].杭州:浙江大学,2015.
[9] 王 凯. 施工扰动对碾压混凝土层间结合质量的影响研究[D]. 杭州:浙江大学,2016.
[10]申嘉荣,徐千军.碾压混凝土坝层面抗剪断强度的人工神经网络与模糊逻辑系统预测[J].清华大学学报(自然科学版),2019,59(5):345-353.
[11]RAAB C, FOURQUET E, EL HALIM O A, et al. Assessment of Interlayer Bonding Properties with Static and Dynamic Devices[C]∥Proceedings of the International Congress and Exhibition “Sustainable Civil Infrastructures: Innovative Infrastructure Geotechnology” GeoMEast 2017: Advancement in the Design and Performance of Sustainable Asphalt Pavements. Sharm El-Sheikh, Egypt. July 15-19, 2017: 244-255.
[12]李子龙. 碾压混凝土坝振动碾压过程细观模拟及压实质量实时控制研究[D].天津:天津大学,2017.
[13]钟登华,鄢玉玲,崔 博,等.考虑压实质量影响的碾压混凝土坝层间结合质量动态评价研究[J].水利学报,2017,48(10):1135-1146.
[14]钟登华,时梦楠,崔 博,等.大坝智能建设研究进展[J].水利学报, 2019, 50(1): 38 -52,61.
[15]邢 岳,田正宏,杜 辉.碾压混凝土坝仓面压实质量5D可视化馈控研究[J].水力发电学报,2019,38(6):29-40.
[16]田正宏,刘剑波,李荣果,等.基于含湿率的碾压混凝土层间结合质量检测方法[J].施工技术,2016,45(23):97-100,150.
[17]刘 英,唐杰伟,刘剑波,等.碾压混凝土含湿率快速检测新方法与应用[J].水利水电施工,2015(6):80-83.
[18]胡添翼.基于空间分布的混凝土坝变形缺失信息估计方法[J].raybet体育在线 院报,2019,36(4):39-42.
[19]史文娇,岳天祥,石晓丽,等.土壤连续属性空间插值方法及其精度的研究进展[J].自然资源学报,2012,27(1):163-175.
[20]周志华.机器学习[M].北京:清华大学出版社,2016.
PDF(5777 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map