Future Precipitation Change in the Belt and Road Region under Representative Concentration Pathway Scenarios

HUANG Xiao-hui, YUE Qun, ZHANG Min

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (7) : 53-60.

PDF(7727 KB)
PDF(7727 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (7) : 53-60. DOI: 10.11988/ckyyb.20190325
WATER RESOURCES AND ENVIRONMENT

Future Precipitation Change in the Belt and Road Region under Representative Concentration Pathway Scenarios

  • HUANG Xiao-hui1,2,3, YUE Qun1,2,3, ZHANG Min3
Author information +
History +

Abstract

The future precipitation change in the Belt and Road region in 2020—2099 is estimated under different representative concentration pathway (RCP) scenarios. The monthly precipitation under different RCP scenarios of global climate model (HadGEM2-ES) is first of all corrected using four transfer functions of the quantile mapping method for a more reliable estimation result. On such basis, the change trend and regional differences are examined. The root mean square error (RMSE) and precipitation deviation (diff) are analyzed to compare the correction efficacy of quartile mapping method. Results demonstrate that the correction effect of linear function PTF1 reaches the optimum. The uncorrected HadGEM2-ES model overestimates the trend of precipitation increase in Central Asia in the RCP2.6 scenario; the RCP4.5 scenario overestimates the increase in precipitation in Central Asia, East Asia and Russia; the other two scenarios RCP6.0 and RCP8.0 overestimate the increase in precipitation in East Asia and Russia. In the four scenarios after correction, the precipitation increases in East Asia, Southeast Asia and Russia, while mostly decreases in North Africa and West Asia. In future, the average annual precipitation is generally increasing, with the average value climbing in East Asia and Russia, whereas declining in West Asia and North Africa. The abrupt change in precipitation differs with scenarios: RCP2.6 scenario has the least abrupt change, while the other three scenarios perform diversely in different regions.The analysis results provide an effective reference for future policy formulation or project construction.

Key words

precipitation change / RCP scenario / the Belt and Road / HadGEM2-ES model / quantile mapping

Cite this article

Download Citations
HUANG Xiao-hui, YUE Qun, ZHANG Min. Future Precipitation Change in the Belt and Road Region under Representative Concentration Pathway Scenarios[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(7): 53-60 https://doi.org/10.11988/ckyyb.20190325

References

[1] 张学珍, 李侠祥, 徐新创,等. 基于模式优选的21世纪中国气候变化情景集合预估[J]. 地理学报, 2017, 72(9):1555-1568.
[2] 王书霞, 张利平, 李 意,等. 气候变化情景下澜沧江流域极端洪水事件研究[J]. 气候变化研究进展, 2019, 15(1):23-32.
[3] 秦大河, THOMAS S. IPCC第五次评估报告第一工作组报告的亮点结论[J]. 气候变化研究进展,2014,10(1):1-6.
[4] BAEK H J, LEE J, LEE H S, et al. Climate Change in the 21st Century Simulated by HadGEM2-AO under Representative Concentration Pathways[J]. Asia-Pacific Journal of Atmospheric Sciences, 2013, 49:603-618.
[5] 张 蓓,戴新刚.2006—2013年CMIP5模式中国降水预估误差分析[J]. 大气科学,2016,40(5):981-994.
[6] 杨红龙,王炳坤,杜尧东,等. RCPs情景下珠江流域气候变化预估分析[J]. 热带气象学报,2014,30(3):503-510.
[7] 黄晓莹,温之平,杜尧东,等. 华南地区未来地面温度和降水变化的情景分析[J]. 热带气象学报,2008,24(3):425-458.
[8] 刘绿柳,姜 彤,徐金阁,等. 21世纪珠江流域水文过程对气候变化的响应[J]. 气候变化研究进展,2012,8(1):28-34.
[9] 胡 芩,姜大膀,范广洲. 青藏高原未来气候变化预估:CMIP5模式结果[J].大气科学,2015,39(2):260-270.
[10]RAJCZAK J, SCHÄR C. Projections of Future Precipitation Extremes over Europe: A Multimodel Assessment of Climate Simulations[J]. Journal of Geophysical Research Atmospheres, 2017, 122(20): 773-800.
[11]BARKHORDARIAN A, VON STORCH H, BHEND J. The Expectation of Future Precipitation Change over the Mediterranean Region is Different from What We Observe[J].Climate Dynamics, 2013,40: 225-244.
[12]VYSHKVARKOVA E V, VOSKRESENSKAYA E N . Changes of Extreme Precipitation in Southern Russia[C]∥IOP Conference Series: Earth & Environmental Science. DOI: 10.1088/1755-1315/107/1/012044.
[13]ONYUTHA C. Trends and Variability in African Long-term Precipitation[J]. Stochastic Environmental Research and Risk Assessment, 2018, 32: 2721-2739.
[14]WOO S, SINGH G P, OH J H, et al. Possible Teleconnections Between East and South Asian Summer Monsoon Precipitation in Projected Future Climate Change[J]. Meteorology and Atmospheric Physics, 2018(2):1-13.
[15]姜 彤, 王艳君, 袁佳双,等. “一带一路”沿线国家2020—2060年人口经济发展情景预测[J]. 气候变化研究进展, 2018, 14(2):155-164.
[16]LIU Y, HAO Y. The Dynamic Links Between CO2 Emissions, Energy Consumption and Economic Development in the Countries along “The Belt and Road”[J]. Science of the Total Environment, 2018, 645: 674-683.
[17]闻新宇,王邵武,朱锦红,等. 英国CRU高分辨率格点资料揭示的20世纪中国气候变化[J]. 大气科学,2006,30(5):894-904.
[18]BELLOUIN N, RAE J, JONES A, et al. Aerosol Forcing in the Climate Model Intercomparison Project (CMIP5) Simulations by HadGEM2-ES and the Role of Ammonium Nitrate[J]. Journal of Geophysical Research, 2011, 116(D20): 1-25.
[19]VAN VUUREN D P, EDMONDS J A, KAINUMA M, et al. A Special Issue on the RCPs[J]. Climatic Change, 2011, 109: 1-4.
[20]VAN VUUREN D P, STEHFEST E, DEN ELZEN M G J, et al. RCP2.6: Exploring the Possibility to Keep Global Mean Temperature Increase below 2℃[J]. Climatic Change, 2011, 109: 95-116.
[21]THOMSON A M, CALVIN K V, SMITH S J, et al. RCP4.5: A Pathway for Stabilization of Radiative Forcing by 2100 [J]. Climatic Change, 2011, 109: 77-94.
[22]MASUI T, MATSUMOTO K, HIJIOKA Y, et al. An Emission Pathway for Stabilization at 6 Wm-2 Radiative Forcing [J]. Climatic Change, 2011, 109: 59-76.
[23]RIAHI K, RAO S, KREY V, et al. RCP8.5: A Scenario of Comparatively High Greenhouse Gas Emissions[J]. Climatic Change, 2011, 109: 33-57.
[24]童 尧,高学杰,韩 振,等.基于RegCM4模式的中国区域日尺度降水模拟误差订正[J].大气科学,2017,41(6):1156-1166.
[25]从 辉, 周维博, 宋 扬,等. 1970—2013年大西安地区降水时空变化特征分析[J]. raybet体育在线 院报, 2017, 34(8):18-23.
PDF(7727 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map