Experimental Study on Thermal Conductivity of Red Clay in Drying Process

CHEN Bo, YAN Rong-tao, LIANG Wei-yun, TIAN Hui-hui, WEI Chang-fu

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (7) : 140-146.

PDF(4691 KB)
PDF(4691 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (7) : 140-146. DOI: 10.11988/ckyyb.20190328
ROCKSOIL ENGINEERING

Experimental Study on Thermal Conductivity of Red Clay in Drying Process

  • CHEN Bo1, YAN Rong-tao1, LIANG Wei-yun1, TIAN Hui-hui2, WEI Chang-fu1,2
Author information +
History +

Abstract

The dynamic change in the three-phase composition of rock and soil in natural environment poses difficulty to the accurate test of thermal conductivity of soil. The heat transfer property of soil can be indirectly obtained through the thermal conductivity dryout curve (TCDC). In this research, the change rule of thermal conductivity of Guilin red clay in drying process was examined by using pressure plate and KD2 Pro soil thermal properties analyzer. Before the matric suction reached the air entry value, the saturation of soil remained unchanged, and the thermal conductivity of soil specimens with varied dry density increased slightly; in this stage, thermal conductivity was mainly related with the change of soil density caused by the change of suction. When matric suction exceeded the air entry value, the thermal conductivity gradually decreased with the reduction of saturation degree; at this stage, moisture content was the main factor affecting thermal conductivity. Based upon the experimental results, Lu's model and William's model were employed to fit the thermal conductivity curve of red clay in the drying process. Both models have good fitting results, hence can be used to simulate the change of thermal conductivity in red clay in drying process.

Key words

red clay / thermal conductivity / soil-water characteristic curve / thermal conductivity dryout curve / drying process

Cite this article

Download Citations
CHEN Bo, YAN Rong-tao, LIANG Wei-yun, TIAN Hui-hui, WEI Chang-fu. Experimental Study on Thermal Conductivity of Red Clay in Drying Process[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(7): 140-146 https://doi.org/10.11988/ckyyb.20190328

References

[1] 陈守义. 用热针法测定土的热导率[J]. 岩土力学, 1989(1):61-65.
[2] MURPHY K D, MCCARTNEY J S, HENRY K S. Impact of Horizontal Run-Out Length on the Thermal Response of Full-Scale Energy Foundations[C]∥Proceedings of Geo-Congress 2014. Atlanta, Georgia. February 23-26, 2014. DOI: 10.1061/9780784413272.262.
[3] LU N, GE S. Effect of Horizontal Heat and Fluid Flow on the Vertical Temperature Distribution in a Semiconfining Layer[J].Water Resources Research, 1996, 32(5): 1449-1454.
[4] POWRIE W, PREENEM. Ground Energy Systems: from Analysis to Geotechnical Design[J]. Géotechnique, 2009, 59(3): 261-271.
[5] 陈文化, 赵成刚, 曾巧玲,等. 地基温度场和湿度场数值模拟及人工边界问题[J]. 岩土工程学报, 2000, 22(5):545-548.
[6] WILLIS W O, RANEY W A. Effects of Compaction on Content and Transmission of Heat in Soils[J]. Journal of Immunology, 1971, 121(1): 166-171.
[7] MENGISTU A G, RENSBURG L D V, MAVIMBELA S S W. The Effect of Soil Water and Temperature on Thermal Properties of Two Soils Developed from Aeolian Sands in South Africa[J]. Catena, 2017, 158: 184-193.
[8] 叶为民,王 琼,潘 虹,等. 高压实高庙子膨润土的热传导性能[J]. 岩土工程学报,2010,32(6):821-826.
[9] 曾召田, 吕海波, 赵艳林, 等.广西红黏土热导率及理论预测模型研究[J].岩土力学,2017,36(增1):3525-3534.
[10]徐云山,赵艳林,刘华贵,等.两种高液限黏土的热导率[J].地下空间与工程学报,2018,14(3):657-663.
[11]刘晨晖,周 东,吴 恒.土壤热导率的温度效应试验和预测研究[J].岩土工程学报,2011,33(12):1877-1886.
[12]SOHN B. Predicting the Effective Thermal Conductivity of Some Sand-Water Mixtures Used for Backfilling Materials of Ground Heat Exchanger[J]. Journal of the Society of Air-Conditioning and Refrigerating Engineers of Korea, 2008, 20(9): 614-623.
[13]LU S, REN T S, GONG Y S, et al. An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature[J]. Soil Science,2007, 71(1): 8-14.
[14]COTE J, KONRAD J M. A Generalized Thermal Conductivity Model or Soil and Construction Materials[J]. Canadian Geotechnical Journal, 2005, 42(2): 443-458.
[15]周 嵩, 陈益峰, 张 勤, 等. 非饱和膨润土的有效热传导特性模型[J]. 岩土力学, 2014(4):1041-1048.
[16]陆 森,任图生. 不同温度下的土壤热导率模拟[J]. 农业工程学报, 2009, 25(7): 13-18.
[17]TONG F, JING L, ZIMMERMAN R W. An Effective Thermal Conductivity Model of Geological Porous Media for Coupled Thermo-hydro-mechanical Systems with Multiphase Flow[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(8):1358-1369.
[18]LU N, DONG Y. Closed-form Equation for Thermal Conductivity of Unsaturated Soils at Room Temperature[J]. Geotechnical and Geoenvironmental Engineering,2015, 141(6): 04015016.
[19]LIKOS W J. Modeling Thermal Conductivity Dryout Curves from Soil-Water Characteristic Curves[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2013, 140(5): 04013056.
[20]廖义玲, 余培厚. 红粘土的微结构及其概化模型[J].工程地质学报, 1994, 2(1):27-37.
[21]孙德安,刘文捷,吕海波. 桂林红黏土的土-水特征曲线[J]. 岩土力学, 2014, 35(12): 3345-3351.
[22]SEPASKHAHA R. Thermal Conductivity of Soils as a Function of Temperature and Water Content[J]. Soil Science Society of America Journal, 1979, 43(3): 439-444.
[23]NOLZ R, KAMMERER G, CEPUDERP. Calibrating Soil Water Potential Sensors Integrated into a Wireless Monitoring Network[J]. Agricultural Water Management, 2013, 116(1): 12-20.
[24]KIM D, KIM G, BAEK H. Relationship Between Thermal Conductivity and Soil-Water Characteristic Curve of Pure Bentonite-based Grout[J]. International Journal of heat and transfer, 2015, 84(4): 1049-1055.
PDF(4691 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map