A Risk Assessment Method for Metro Shield Construction Based on Trapezoidal Fuzzy Number and C-OWA Operator

ZONG Qiu-lei, WANG Bin, WANG Kai, ZHANG Min-jia, ZHANG Jia-ming, WANG Cong

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (12) : 98-104.

PDF(4797 KB)
PDF(4797 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (12) : 98-104. DOI: 10.11988/ckyyb.20190917
ROCKSOIL ENGINEERING

A Risk Assessment Method for Metro Shield Construction Based on Trapezoidal Fuzzy Number and C-OWA Operator

  • ZONG Qiu-lei1, WANG Bin1, WANG Kai1, ZHANG Min-jia1, ZHANG Jia-ming2, WANG Cong2
Author information +
History +

Abstract

The process of shield tunnel construction for metro is very complicated involving many potential risks. If not properly controlled, the construction will pose severe threats to public safety. In an attempt to effectively control the risks of shield tunnel construction, a risk assessment method based on trapezoidal fuzzy number and C-OWA operator is proposed. The evaluation information of experts is represented by trapezoidal fuzzy numbers, and the operational rule of fuzzy number is adopted to calculate the risk level of each potential risk factor. The risk level of evaluation indicators at all hierarchies, combined with the weight of each risk index calculated by C-OWA operator weighting method, is determined by calculating down-top of the evaluation system. The risk rating is obtained according to the risk matrix. The proposed method was applied to evaluate the construction risks of a shield tunnel construction of Shenzhen Metro Line 12, and the potential risk factors that require risk prevention measures in the project are obtained. The example shows that the proposed method is reasonable and reliable. Compared with traditional risk assessment methods, it has more advantages in dealing with complex problems involving fuzzy definition and subjectiveness.

Key words

metro shield construction / trapezoidal fuzzy number / C-OWA operator / risk assessment / Shenzhen

Cite this article

Download Citations
ZONG Qiu-lei, WANG Bin, WANG Kai, ZHANG Min-jia, ZHANG Jia-ming, WANG Cong. A Risk Assessment Method for Metro Shield Construction Based on Trapezoidal Fuzzy Number and C-OWA Operator[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(12): 98-104 https://doi.org/10.11988/ckyyb.20190917

References

[1] 田博全. 大连地铁隧道盾构法施工风险研究[D].大连:大连理工大学,2016.
[2] EINSTEIN H H. Risk and Risk Analysis in Rock Engineering[J]. Tunnelling and Underground Space Technology, 1996, 11(2):141-155.
[3] ESKESEN S D, TENGBORG P, KAMPMANN J, et al. Guidelines for Tunnelling Risk Management: International Tunnelling Association, Working Group No.2[J]. Tunnelling and Underground Space Technology, 2004, 19(3):217-237.
[4] DING L Y, YU H L, LI H, et al. Safety Risk Identification System for Metro Construction on the Basis of Construction Drawings[J]. Automation in construction, 2012, 27: 120-137.
[5] 周红波,高文杰,蔡来炳,等.基于WBS-RBS的地铁基坑故障树风险识别与分析[J].岩土力学,2009,30(9):2703-2707,2726.
[6] 王?,刘保国,亓 轶.管线渗漏破坏下地铁隧道施工坍塌风险预测[J].岩石力学与工程学报,2018,37(增刊1):3432-3440.
[7] 周 健,王红卫,吴邵海.盾构法施工风险的多态贝叶斯网络模型分析[J].同济大学学报(自然科学版),2013,41(2):186-190,202.
[8] 赵延喜,徐卫亚.基于AHP和模糊综合评判的TBM施工风险评估[J].岩土力学,2009,30(3):793-798.
[9] 刘 戈, 李 峰. 基于三角模糊数的地铁施工风险评价研究[J]. 建筑经济, 2011(增刊1):223-226.
[10]高 焱,夏晶晶,耿纪莹,等.基于模糊综合评判法的寒区铁路隧道冻害评价体系研究[J].铁道标准设计,2018,62(7):124-129.
[11]PENDER S. Managing Incomplete Knowledge: Why Risk Management is Not Sufficient[J]. International Journal of Project Management, 2001, 19(2): 79-87.
[12]EBRAT M, GHODSI R. Construction Project Risk Assessment by Using Adaptive-network-based Fuzzy Inference System: An Empirical Study[J]. KSCE Journal of Civil Engineering, 2014, 18(5):1213-1227.
[13]ZADEH L A. Fuzzy Sets[J]. Information and control, 1965, 8(3):338-353.
[14]CHEN S H. Ranking Fuzzy Numbers with Maximizing Set and Minimizing Set[J]. Fuzzy sets and Systems, 1985, 17(2):113-129.
[15]JAIN R. Decision Making in the Presence of Fuzzy Variables[J]. IEEE Transactions on Systems Man & Cybernetics, 1976, 6(10):698-703.
[16]牛利利. 基于决策者风险偏好的直觉模糊数排序方法[D]. 南宁:广西大学, 2013.
[17]刘华文. 基于距离测度的模糊数排序[J]. 山东大学学报(理学版), 2004, 39(2):30-36.
[18]高山林, 李 健, 阮小葭. 基于理想点的模糊数排序方法[J]. 山东大学学报 (理学版), 2009, 44(8):86-89.
[19]DE CAMPOS IBÁÑEZ L M, MUÑOZ A G. A Subjective Approach for Ranking Fuzzy Numbers[J]. Fuzzy Sets and Systems, 1989, 29(2): 145-153.
[20]THORANI Y L P,RAVI S N.Ranking Generalized LR Fuzzy Numbers Using Area,Mode,Spreads and Weights[J].Applied Mathematical Sciences,2017,11(39):1943-1953.
[21]YAGER R R. On Ordered Weighted Averaging Aggregation Operators in Multicriteria Decision Making [J]. IEEE Transactions on Systems, Man and Cybernetics, 1988, 18(1) : 183-190.
[22]徐泽水. 拓展的C-OWA算子及其在不确定多属性决策中的应用[J]. 系统工程理论与实践,2005,25(11):7-13.
[23]亢磊磊.基于C-OWA算子和BP神经网络的地铁车站火灾安全评价[J].隧道建设(中英文),2018,38(7):1158-1163.
[24]陈为公, 张胜昔, 王会会. 基于PCA-C-OWA算子赋权的钢筋混凝土施工质量灰色聚类评价[J]. 土木工程与管理学报, 2016, 33(1):1-6.
[25]YOU W, WANG J, ZHANG W, et al. Construction Risk Assessment of Deep Foundation Pit in Metro Station Based on G-COWA Method[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2018, 153(5): 052018.
[26]ZHE H. Risk Management for Overseas Construction Projects[J]. International Journal of Project Management, 1995, 13(4): 231-237.
[27]XIA H C, LI D F, ZHOU J Y, et al. Fuzzy LINMAP Method for Multiattribute Decision Making under Fuzzy Environments[J]. Journal of Computer and System Sciences, 2006, 72(4): 741-759.
[28]芮大虎, 张长海, 王 杨, 等. 盾构竖井深基坑工程风险识别与评估[J]. 土木建筑与环境工程, 2013(增刊1):117-120.
[29]GB 50652—2011,城市轨道交通地下工程建设风险管理规范[S]. 北京:中国建筑工业出版社,2011.
[30]冯文成. 广州地铁盾构施工风险管控研究[D]. 广州:华南理工大学, 2014.
[31]温 森,徐卫亚. 深埋隧洞TBM卡机事故风险分析[J].raybet体育在线 院报,2008,22(5):135-138.
PDF(4797 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map