Advances in Structural Analysis Methods for Optimal Operation of Reservoirs System

ZHOU Ting, QI Wang-yue, JIN Ju-liang

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (12) : 14-21.

PDF(6430 KB)
PDF(6430 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (12) : 14-21. DOI: 10.11988/ckyyb.20191117
WATER RESOURCES AND ENVIRONMENT

Advances in Structural Analysis Methods for Optimal Operation of Reservoirs System

  • ZHOU Ting1, QI Wang-yue1, JIN Ju-liang2
Author information +
History +

Abstract

With the expansion of scale and the complication of structural functions of reservoir groups, structural analysis has been playing an increasingly important role in the optimizing dispatching of reservoirs. The aim of this study is to identify the applicability, advantages and disadvantages of different structural analysis methods and to provide an efficient structural analysis method for reservoir groups with complicated structure. On the basis of research achievements in the past six decades, we reviewed the advances in five structure analysis methods, namely, sequential simulation method, water supply discriminant method, equilibrium with utility theory, aggregation-decomposition method, and hydraulic connection method. Sequential simulation method is logical, intuitive and universal, while water supply discriminant method could quickly sort the order of reservoirs storage and supply in power generation operation. Both are suitable for cascaded reservoirs. Equilibrium with utility theory, which is based on firm equilibrium theory in microeconomics, has a solid theoretical foundation and is suitable for parallel reservoirs with relatively independent hydraulic relations. Aggregation-decomposition method involves two forms: reservoirs’ joint operation chart and large-scale system decomposition and coordination, which can be used in combination with cascaded and parallel structural analysis methods and is suitable for large-scale hybrid structural reservoir group. Hydraulic connection method describes the relationship pairwise in reservoir group by adopting matrix and is not limited by the structure of reservoir group, thus is applicable to any structural reservoir group. Structural analysis method is critical to optimize and efficiently solve reservoirs optimal operation problem, but it also needs to cooperate with other links.We suggested that further research should be carried out on the utilization of runoff forecast information, the coupling of statistical model with physical background and the refined operation of reservoir group of hybrid structures.

Key words

optimal operation of reservoirs system / structural analysis / equilibrium theory / equivalent reservoirs / hydrologic connection / hybrid connection of reservoir group

Cite this article

Download Citations
ZHOU Ting, QI Wang-yue, JIN Ju-liang. Advances in Structural Analysis Methods for Optimal Operation of Reservoirs System[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(12): 14-21 https://doi.org/10.11988/ckyyb.20191117

References

[1] 中华人民共和国水利部, 中华人民共和国统计局. 第一次全国水利普查公报[J]. 中国水利, 2013(7): 1-3.
[2] CHEN D, LEON A S, GIBSON N L, et al. Dimension Reduction of Decision Variables for Multireservoir Operation: A Spectral Optimization Model[J]. Water Resources Research, 2016, 52(1): 36-51.
[3] LITTLE J D C.The Use of Storage Water in a Hydroelectric System[J].Operational Research,1955,3(2):187-197.
[4] YEH W W. Reservoir Management and Operations Models: A State-of-the-Art Review[J]. Water Resources Research, 1985, 21(12): 1797-1818.
[5] LABADIE J W.Optimal Operation of Multireservoir Systems: State-of-the-Art Review[J].Journal of Water Resources Planning and Management,2004,130(2):93-111.
[6] 王 浩, 王 旭, 雷晓辉, 等. 梯级水库群联合调度关键技术发展历程与展望[J]. 水利学报, 2019, 50(1): 25-37.
[7] 郭生练, 陈炯宏, 刘 攀, 等. 水库群联合优化调度研究进展与展望[J]. 水科学进展, 2010, 21(4): 496-503.
[8] 王本德, 周惠成, 卢 迪. 我国水库(群)调度理论方法研究应用现状与展望[J]. 水利学报, 2016, 47(3): 337-345.
[9] 马 黎, 冶运涛. 梯级水库群联合优化调度算法研究综述[J]. 人民黄河, 2015, 37(9): 126-132,139.
[10]JAY R L. Some Derived Operating Rules for Reservoirs in Series or in Parallel[J]. Journal of Water Resources Planning and Management, 1999, 125(3): 143-153.
[11]纪昌明, 周 婷, 王丽萍, 等. 水库水电站中长期隐随机优化调度综述[J]. 电力系统自动化, 2013, 37(16): 129-135.
[12]郭旭宁, 秦 韬, 雷晓辉, 等. 水库群联合调度规则提取方法研究进展[J]. 水力发电学报, 2016, 35(1): 19-27.
[13]方洪斌, 王 梁, 李新杰. 水库群调度规则相关研究进展[J]. 水文, 2017, 37(1): 14-18.
[14]王 栋, 许圣斌. 水库群系统防洪联合调度研究进展[J]. 水科学进展, 2001, 12(1): 118-124.
[15]郭旭宁, 胡铁松, 方洪斌, 等. 水库群联合供水调度规则形式研究进展[J]. 水力发电学报, 2015, 34(1): 23-28.
[16]李英海, 张 琪, 董晓华, 等. 长江中上游水库群汛末蓄水调度研究综述[J]. 水资源研究, 2016, 5(5): 452-459.
[17]邓显羽, 彭 勇, 叶碎高, 等. 粒子群算法在水库(群)优化调度研究中的应用综述[J]. 水利水电科技进展, 2010, 30(5): 90-94.
[18]白 涛, 黄 强. 仿生算法在水库(群)优化调度中的应用综述[J]. 中国农村水利水电, 2009, 17(9): 154-157,165.
[19]刘 攀, 郭生练, 李 玮, 等. 遗传算法在水库调度中的应用综述[J]. 水利水电科技进展, 2006, 26(4): 78-83.
[20]SRINIVASAN K, KUMAR K. Multi-objective Simulation-Optimization Model for Long-term Reservoir Operation using Piecewise Linear Hedging Rule[J]. Water Resources Management, 2018, 32(5): 1901-1911.
[21]CHANG J, KAN Y, WANG Y, et al. Conjunctive Operation of Reservoirs and Ponds Using a Simulation-Optimization Model of Irrigation Systems[J]. Water Resources Management, 2017, 31(3): 1-18.
[22]NIU W J, FENG Z K, CHENG C T, et al. A Parallel Multi-objective Particle Swarm Optimization for Cascade Hydropower Reservoir Operation in Southwest China[J]. Applied Soft Computing, 2018, 70: 562-575.
[23]GUO W, WANG H. Optimal Operation of Three Gorges Reservoir Based on Ant Colony Algorithm [C]//Proceedings of the 2010 International Conference on Intelligent Computing and Cognitive Informatics. IEEE. Kuala Lumpur, Malaysia, June 22-23, 2010. DOI: 10.1109/ICICCI.2010.101.
[24]JI C, ZHOU T, HUANG H. Operating Rules Derivation of Jinsha Reservoirs System with Parameter Calibrated Support Vector Regression [J]. Water Resources Management, 2014, 28(9): 2435-2451.
[25]岳 华,马光文,杨庚鑫.梯级水库群超标洪水的协同应急调度研究[J].水利学报,2019,50(3):356-363.
[26]SUI X, WU S, LIAO W, et al. Optimized Operation of Cascade Reservoirs on Wujiang River During 2009-2010 Drought in Southwest China[J]. Water Science and Engineering, 2013, 6(3): 308-316.
[27]BAI T, CHANG J, CHANG F, et al. Synergistic Gains from the Multi-objective Optimal Operation of Cascade Reservoirs in the Upper Yellow River Basin[J]. Journal of Hydrology, 2015, 523: 758-767.
[28]CHENG C, WANG S, CHAU K, et al. Parallel Discrete Differential Dynamic Programming for Multireservoir Operation [J]. Environmental Modelling & Software, 2014, 57: 152-164.
[29]谢先庭. 适应负荷要求的水库调度[J]. 水力发电, 2005, 31(9): 75-80.
[30]李安强, 罗 斌, 付 湘, 等. 乌江梯级水库联合优化调度方案[J]. 水电自动化与大坝监测, 2010, 41(22): 53-56.
[31]缪益平,魏 鹏,陈飞翔,战永胜.雅砻江下游梯级水电站联合优化调度研究[J].水力发电,2014,40(5):70-72.
[32]顾巍巍, 杨益青, 钟 伟, 等. 基于供水次序和供水区间约束的水库群实时联合调度[J]. 浙江水利科技, 2015, 43(6): 15-18.
[33]纪昌明,蒋志强,孙 平,等.李仙江流域梯级总出力调度图优化[J].水利学报,2014,45(2):197-204.
[34]郭壮志, 吴杰康, 孔繁镍, 等. 梯级水电站水库蓄能利用最大化的长期优化调度[J]. 中国电机工程学报, 2010, 30(1): 20-26.
[35]厉以宁. 现代西方经济学概论[M].北京:北京大学出版社,2010.
[36]HUI R,LUND J. Flood Storage Allocation Rules for Parallel Reservoirs[J].Journal of Water Resources Planning and Management,2014,141(5):4014075.1-4014075.13.
[37]PAREDES J, LUND J R. Refill and Drawdown Rules for Parallel Reservoirs: Quantity and Quality[J]. Water Resources Management, 2006, 20(3): 359-376.
[38]WU R S. Derivation of Balancing Curves for Multiple Reservoir Operation[D]. New York: Cornell University, 1988.
[39]CLARK E J. Engineering Manual: Engineering and Design, Hydropower[K]. Washington D.C.: U.S. Army Corps of Engineers, 1985.
[40]胡铁松, 方洪斌, 曾 祥, 等. 双库并联系统蓄水量
空间分布特性研究[J]. 水利学报, 2014, 45(10): 1156-1164.
[41]CHANG L C, CHANG F J. Multi-objective Evolutionary Algorithm for Operating Parallel Reservoir System[J]. Journal of Hydrology, 2009, 377(1/2): 12-20.
[42]曾 祥. 供水水库群联合调度规则表述形式及其最优性条件[D]. 武汉: 武汉大学, 2015.
[43]刘 攀, 郭生练, 张越华, 等. 水电站机组间最优负荷分配问题的多重解研究[J]. 水利学报, 2010, 41(5): 601-607.
[44]申建建, 程春田, 李卫东. 复杂时段耦合型约束水电站群短期变尺度优化调度方法[J]. 中国电机工程学报, 2014, 34(1): 87-95.
[45]徐 斌, 马昱斐, 储晨雪, 等. 多主体水库群联合调度增益分配讨价还价模型[J]. 水力发电学报, 2018, 37(5): 47-57.
[46]RUI H. Flood Storage Allocation Rules for Parallel Reservoirs[D]. Davis: University of California, Davis, 2014.
[47]钟平安, 李兴学, 张初旺, 等. 并联水库群防洪联合调度库容分配模型研究与应用[J]. raybet体育在线 院报, 2003, 20(6): 51-54.
[48]程春田,王本德.启发式与人机交互相结合的水库防洪模糊优化调度模型[J].水利学报,1995,40(11):71-76.
[49]吴保生, 陈惠源. 多库防洪系统优化调度的一种解算方法[J]. 水利学报, 1991, 36(11): 35-40,46.
[50]童晓霞, 孙宁宁, 李亚龙. 动态蚁群算法在梯级水库优化调度中的应用[J]. 中国农村水利水电, 2014(6): 86-89.
[51]王 旭,庞金城,雷晓辉,等.水库调度图优化方法研究评述[J].南水北调与水利科技,2010,8(5):71-75.
[52]NEELAKANTAN T R, SURIBABU C R. Discussion of “Simultaneous Optimization of Operating Rules and Rule Curves for Multireservoir Systems Using a Self-adaptive Simulation-GA Model” by Ali Ahmadi Najl, Ali Haghighi, and Hossein Mohammad Vali Samani[J]. Journal of Water Resources Planning and Management, 2018, 144(4):07018003.
[53]MARIEN J L, DAMÁZIO J M, COSTA F S. Building Flood Control Rule Curves for Multipurpose Multireservoir Systems Using Controllability Conditions[J]. Water Resources Research, 1994, 30(4): 1135-1144.
[54]彭安帮, 彭 勇, 许 钦, 等. 基于改进PSO算法的跨流域水库群联合调度图优化[J]. 大连理工大学学报, 2016, 56(4): 406-413.
[55]WEI C, LIN S, RAYSHYAN W U. A Study for Joint Operating Policies of Multiple Reservoirs Using Genetic Algorithms with Rule-curve Shape Variables[C]//Advances in Hydraulics and Water Engineering: Proceedings of the 13th Iahr-Apd Congress. Singapore. August 6-8, 2002.
[56]邵 琳, 王丽萍, 黄海涛, 等. 水电站水库调度图的优化方法与应用:基于混合模拟退火遗传算法[J]. 电力系统保护与控制, 2010, 38(12): 40-43,49.
[57]黄 强, 张洪波, 原文林, 等.基于模拟差分演化算法的梯级水库优化调度图研究[J]. 水力发电学报, 2008, 27(6): 13-17,26.
[58]郭旭宁, 胡铁松, 张 涛, 等. 基于集对分析的供水水库群联合调度规则[J]. 系统工程理论与实践, 2014, 34(6): 1510-1516.
[59]罗 斌, 钱凯霞, 李安强. 乌江梯级水库联合优化调度方案研究[J]. 人民长江, 2010, 41(22):8-11.
[60]蒋志强. 嵌套结构并行多维动态规划算法及其应用研究[D]. 北京:华北电力大学, 2015.
[61]TURGEON A. Optimal Operation of Multireservoir Power System with Stochastic Inflow[J]. Water Resources Research, 1980, 16(2): 275-283.
[62]TURGEON A,CHARBONNEAU R.An Aggregation-Disaggregation Approach to Long-term Reservoir Management[J].Water Resources Research,1998,34(12):3585-3594.
[63]高仕春, 万 飚, 梅亚东, 等. 三峡梯级和清江梯级水电站群联合调度研究[J]. 水利学报, 2006, 37(4): 504-507,510.
[64]刘 宁. 三峡-清江梯级电站联合优化调度研究[J]. 水利学报, 2008, 38(3): 264-271.
[65]王 莹. 三峡、清江梯级水电站联合调度方法研究与应用[D]. 武汉:华中科技大学, 2013.
[66]周玉琴. 三峡梯级与清江梯级联合调度研究[D]. 武汉:武汉大学, 2005.
[67]金 羽. 淮河流域并联水库群防洪错峰优化调度研究[D]. 南京: 河海大学, 2007.
[68]胡 挺, 唐海华, 梅亚东, 等. 大渡河流域混联水库群长期优化调度[J]. 水电自动化与大坝监测, 2011, 35(6): 59-63.
[69]许银山,梅亚东,钟壬琳,等.大规模混联水库群调度规则研究[J].水力发电学报,2011,34(2):20-25.
[70]万 俊, 雷卫东. 混联水库群联合调度图的绘制探讨[J]. 水电能源科学, 1988, 6(3): 274-279.
[71]李安强, 王丽萍, 纪昌明, 等. 跨流域混联式水电站群联合补偿效益分析[J]. 水电自动化与大坝监测, 2007, 31(5): 5-9.
[72]陈立华, 梅亚东, 杨 娜, 等. 水库群长期优化调度模型与水力关联矩阵[J]. 武汉大学学报(工学版), 2009, 42(3): 308-312.
[73]许银山,梅亚东,钟壬琳,等.大规模混联水库群调度规则研究[J].水力发电学报,2011,34(2):20-25.
[74]周建中, 张 睿, 王 超, 等. 分区优化控制在水库群优化调度中的应用[J]. 华中科技大学学报(自然科学版), 2014, 42(8): 79-84.
[75]曾 祥, 胡铁松, 郭旭宁, 等. 并联供水水库解析调度 规则研究Ⅱ:多阶段模型与应用[J]. 水利学报, 2014, 45(9): 1120-1126,1133.
PDF(6430 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map