Wavelet-Cloud Prediction Model for Dam Deformation

HE Yang-yang, SU Huai-zhi

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (11) : 59-63.

PDF(1303 KB)
PDF(1303 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (11) : 59-63. DOI: 10.11988/ckyyb.20191018
ENGINEERING SAFETY AND DISASTER PREVENTION

Wavelet-Cloud Prediction Model for Dam Deformation

  • HE Yang-yang1,2, SU Huai-zhi1,2
Author information +
History +

Abstract

The original observation signal of dam deformation can be regarded as the superposition of real signal and white noise. A wavelet-cloud prediction model for dam deformation time series analysis is proposed in the present paper by combining wavelet denoising and cloud model to effectively predict dam deformation. Firstly, the multi-resolution analysis of wavelet is used to decompose the original signal into the real signal item and the noise item in the original deformation time series of the dam. Secondly, the cloud model language rules for deformation prediction are created; the principle of maximum membership degree is used to determine the rule predecessor to which the predicted deformation belongs and the corresponding historical cloud which is further combined with the current cloud to generate predictive cloud. The prediction accuracy among traditional statistical model, cloud model, and the proposed wavelet-cloud model is compared with the deformation prediction of a dam as an example. Result demonstrates that the proposed wavelet-cloud prediction model provides more accurate prediction results, offering an effective basis for the safe operation of dam.

Key words

dam deformation prediction / time series analysis / wavelet analysis / cloud model / denoising

Cite this article

Download Citations
HE Yang-yang, SU Huai-zhi. Wavelet-Cloud Prediction Model for Dam Deformation[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(11): 59-63 https://doi.org/10.11988/ckyyb.20191018

References

[1] 王 伟,徐 锴,方绪顺,等.基于改进粒子群算法的大坝监控加权统计模型[J].raybet体育在线 院报,2017,34(8):41-46.
[2] SU Huai-zhi, WEN Zhi-ping, SUN Xiao-ran, et al. Time-varying Identification Model for Dam Behavior Considering Structural Eeinforcement[J]. Structural Safety, 2015, 57: 1-7.
[3] SU Huai-zhi, WU Zhong-ru, WEN Zhi-ping. Identification Model for Dam Behavior Based on Wavelet Network[J]. Computer-Aided Civil and Infrastructure Engineering, 2007, 22(6): 438-448.
[4] SU Huai-zhi, WEN Zhi-ping, CHEN Zhe-xin, et al. Dam Safety Prediction Model Considering Chaotic Characteristics in Prototype Monitoring Data Series[J]. Structural Health Monitoring, 2016, 15(6): 639-649.
[5] 李鹏鹏,苏怀智,郭芝韵,等.基于人工蜂群算法与Elman神经网络组合的大坝变形监控模型[J].水利水电技术,2017,48(3):104-108.
[6] 罗德河,郑东健.大坝变形的小波分析与ARMA预测模型[J].水利水运工程学报,2016(3):70-75.
[7] SU Huai-zhi, LI Xing, YANG Bei-bei, et al. Wavelet Support Vector Machine-based Prediction Model of Dam Deformation[J]. Mechanical Systems and Signal Processing, 2018, 110: 412-427.
[8] 汪 程,杨 光,祖安君,等.混凝土坝变形Wavelet-EGM-PE-ARIMA组合预测模型[J].raybet体育在线 院报,2019,36(8):1-7.
[9] 蒋 嵘,李德毅,陈 晖.基于云模型的时间序列预测[J].解放军理工大学学报,2000,1(5):13-18.
[10]李德毅,刘常昱,刘 鹢.不确定性人工智能[J].软件学报,2004,15(11):1583-1594.
[11]邵年华.基于云理论的不确定性推理模型在径流预测中的应用[J].水利科技与经济,2018,24(9):62-66.
[12]康传利,陈 洋,张临炜,等.小波和混沌神经网络在大坝变形预测中的应用[J].人民黄河,2020(3):10-13.
[13]MALLAT S G. Zero-crossing of a Wavelet Transform[J]. IEEE Transactions on Information Theory, 1991, 37(4):1019-1033.
[14]杨贝贝.基于小波核函数和支持向量机的大坝变形预测[J].人民长江,2016,47(17):98-101.
[15]姜振翔,徐镇凯,魏博文,等.基于小波分解和支持向量机的大坝位移监控模型[J].raybet体育在线 院报,2016,33(1):43-47.
[16]葛哲学,沙 威.小波分析理论与MATLAB R2007实现[M].北京:电子工业出版社,2007.
[17]付 斌,李道国,王慕快.云模型研究的回顾与展望[J].计算机应用研究,2011,28(2):420-426.
PDF(1303 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map