Runoff Simulation for Aojiang River Basin Using SWAT Model Driven by China Meteorological Assimilation Driving Datasets

TIAN Yang, XIAO Gui-rong

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (11) : 27-32.

PDF(1687 KB)
PDF(1687 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (11) : 27-32. DOI: 10.11988/ckyyb.20190902
WATER RESOURCES AND ENVIRONMENT

Runoff Simulation for Aojiang River Basin Using SWAT Model Driven by China Meteorological Assimilation Driving Datasets

  • TIAN Yang, XIAO Gui-rong
Author information +
History +

Abstract

At present, studies on runoff simulation in small-scale watersheds with insufficient meteorological and hydrological data are inadequate. The monthly runoff of the Aojiang River basin from 2008 to 2016 is simulated using the SWAT model driven by the China Meterological Assimilation Driving Datasets (CMADS). The model is calibrated and validated with the calculated data by the hydrological analogy method in line with the observation data of two adjacent traditional meteorological stations. The simulation results are in good agreement with the observed values. The values of correlation coefficient and Nash-Suttcliffe efficiency coefficient are 0.84 and 0.76 in calibration period (2010-2013), and 0.85 and 0.74 in validation period (2014-2016), respectively, meeting the evaluation requirements for the model. The SWAT model driven by CMADS is suitable for runoff simulation in Aojiang River basin, and the hydrological analogy method is suitable for runoff calculation in areas with insufficient hydrological data.

Key words

runoff / CMADS / SWAT model / hydrologic analogy method / Aojiang River basin

Cite this article

Download Citations
TIAN Yang, XIAO Gui-rong. Runoff Simulation for Aojiang River Basin Using SWAT Model Driven by China Meteorological Assimilation Driving Datasets[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(11): 27-32 https://doi.org/10.11988/ckyyb.20190902

References

[1] NEITSCH S L, ARNOLD J G, KINIRY J R, et al. Soil and Water Assessment Tool Theoretical Documentation Version 2005[M]. Texas: Texas Water Resources Institute, 2005.
[2] 张银辉. SWAT模型及其应用研究进展[J]. 地理科学进展, 2005(5):123-132.
[3] 孙 瑞, 张雪芹. 基于SWAT模型的流域径流模拟研究进展[J]. 水文, 2010,30(3):28-32.
[4] 程 艳, 敖天其, 黎小东, 等. 基于参数移植法的SWAT模型模拟嘉陵江无资料地区径流[J]. 农业工程学报, 2016,32(13):81-86.
[5] FUKA D R, WALTER M T, MACALISTER C, et al. Using the Climate Forecast System Reanalysis Dataset to Improve Weather Input Data for Watershed Models[J]. Hydrological Processes 2015, 28(22): 5613-5623.
[6] XU H, XU C Y, CHEN S, et al. Similarity and Difference of Global Reanalysis Datasets (WFD and APHRODITE) in Driving Lumped and Distributed Hydrological Models in a Humid Region of China[J]. Journal of Hydrology, 2016, 542: 343-356.
[7] 刘 俊, 刘时银, 上官冬辉, 等. CMADS、ITPCAS和TRMM 3B42 3套降水数据集在玉龙喀什河流域的适用性评价[J]. 华北水利水电大学学报(自然科学版), 2017,38(5):28-37.
[8] 阚宝云, 苏凤阁, 童 凯, 等. 四套降水资料在喀喇昆仑山叶尔羌河上游流域的适用性分析[J]. 冰川冻土, 2013,35(3):710-722.
[9] 孟现勇, 王 浩, 雷晓辉, 等. 基于CMDAS驱动SWAT模式的精博河流域水文相关分量模拟、验证及分析[J]. 生态学报, 2017,37(21):7114-7127.
[10]张春辉, 王炳亮. CMADS与传统气象站数据驱动下的SWAT模型模拟效果评价:以苦水河流域为例[J]. 中国农村水利水电, 2018(6):52-57.
[11]孟现勇, 师春香, 刘时银, 等. CMADS数据集及其在流域水文模型中的驱动作用:以黑河流域为例[J]. 人民珠江, 2016,37(7):1-19.
[12]张利敏, 王 浩, 孟现勇. 基于CMADS驱动的SWAT模型在辽宁浑河流域的应用研究[J]. 华北水利水电大学学报(自然科学版), 2017,38(5):1-9.
[13]罗育池, 蔡俊雄, 靳孟贵, 等. 无实测资料河流环境容量核算中设计流量推求[J]. 环境科学与技术, 2008(3):69-72.
[14]张玉珍,黄文丹,王智苑,等.福建敖江流域水域生态系统健康评估[J].湖泊科学,2015,27(6):1079-1086.
[15]金 鑫, 金彦香, 杨登兴. SWAT模型在土地利用/覆被变化剧烈地区的改进与应用[J]. 地球信息科学学报, 2018,20(8):1064-1073.
[16]刘画眉, 林美兰, 徐林春, 等. 利用流域水文站进行无资料河段径流分析[J]. 中国农村水利水电, 2015(1):53-57.
[17]周彦龙, 刘 燕. 水文比拟法在计算河川径流量时的修正[J]. 水利规划与设计, 2017(5):44-46.
[18]姜晓峰, 王 立, 马 放, 等. SWAT模型土壤数据库的本土化构建方法研究[J]. 中国给水排水, 2014,30(11):135-138.
[19]黎云云, 畅建霞, 金文婷, 等. 基于SWAT模型的渭河流域分区径流模拟研究[J]. 西北农林科技大学学报(自然科学版), 2017,45(4):204-212.
[20]祁 敏, 张 超. 基于SWAT模型的阿克苏河流域径流模拟[J]. 水土保持研究, 2017,24(3):283-287.
[21]祖拜代·木依布拉, 师庆东, 普拉提·莫合塔尔, 等. 基于SWAT模型的乌鲁木齐河上游土地利用和气候变化对径流的影响[J]. 生态学报, 2018,38(14):5149-5157.
PDF(1687 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map