Surfactant is a common pollutant in natural waters. The adsorption of surfactant on sediment changes the surface properties of sediment, thus affecting the rules of sediment's incipient motion. With the fine grain sediment in Wuhan segment of the Yangtze River as research object, the effects of ionic surfactants on sediment's incipient motion were examined both in qualitative and quantitative terms by simulating the starting process of sediments in circulating flumes. Results suggest that the starting process of sediment can be subdivided into seven stages. When flow velocity was 15.0~20.0 cm/s, the water body was obviously turbid and sediments started. The presence of surfactant reduced the suspension of sediments and cut the equilibrium sediment concentration significantly to around 50% of the initial sediment content. A rising concentration of anionic surfactant helped augment the critical starting velocity of sediment from 19.37 cm/s to 23.05 cm/s, while curb the full starting velocity slightly from 37.06 cm/s to 36.15 cm/s. Increment in the concentration of cationic surfactant boosted the critical starting velocity of sediment from 19.37 cm/s to 23.32 cm/s, while lowered the full starting velocity from 37.06 cm/s to 32.12 cm/s. The presence of ionic surfactants promotes the flocculation of sediments, thus evidently affects the incipient motion of sediment. Cationic surfactant has a greater effect than anionic surfactant.
Key words
fine grain sediment /
ionic surfactant /
sediment's incipient motion /
critical starting velocity /
full starting velocity /
equilibrium sediment concentration
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 窦国仁. 论泥沙起动流速[J].水利学报, 1960(4):44-60.
[2] 窦国仁. 再论泥沙起动流速[J].泥沙研究, 1999(6):3-5.
[3] GILBERT G K. The Transportation of Debris by Running Water[R]. California: U.S. Geological Survey, 1914.
[4] ROUSE H. Experiments on the Mechanics of Sediment Suspension[C]//Proceedings of the Fifth International Congress for Applied Mechanics. Massachusetts, September 12-16, 1938. New York: John Wiley & Sons, 1938: 550-554.
[5] ROUSE H. Modern Conceptions of the Mechanics or Fluid Turbulence[J]. Transactions of the American Society of Civil Engineers, 1937, 102(1): 463-505.
[6] 张瑞瑾, 谢鉴衡, 王明甫.河流泥沙动力学[M]. 北京:水利电力出版社, 1989.
[7] 唐存本.泥沙起动规律[J].水利学报,1963(2):1-12.
[8] 沙玉清. 泥沙运动学引论[M].北京:中国工业出版社, 1996.
[9] 钱 宁. 万兆惠.泥沙运动力学[M].北京:科学出版社, 1983.
[10]韩其为, 何明民. 泥沙起动规律及起动流速[J]. 泥沙研究, 1982(2):11-26.
[11]王光谦.河流泥沙研究进展[J].泥沙研究,2007(2):64-81.
[12]刘彩娟. 表面活性剂的应用与发展[J]. 河北化工, 2007(4):20-21.
[13]张连水.日常生活与表面活性剂[J].化学教育, 1998(3):1-3.
[14]黄才安, 赵晓东. 床沙质与冲泻质划分的新方法[J]. 扬州大学学报(自然科学版), 2003(1):61-65.
[15]李振青, 吴昌洪, 李会云, 等. 三峡工程运行后长江中下游河道设计频率水文年泥沙模拟研究[J]. raybet体育在线
院报, 2015, 32(2):11-13,19.
[16]宋晓阳, 周晶晶, 邓樑斌. 电解质对细颗粒泥沙絮凝影响的试验研究[J]. 人民长江, 2013, 44(9):67-71.
[17]柴朝晖, 李昊洁, 王 茜, 等. 黏性泥沙絮凝研究进展[J]. raybet体育在线
院报, 2016, 33(2):1-9,18.