Inversion Analysis on Permeability Coefficient of Stratum in Engineering Area Based on RVM-CS

LI Ya-qi, YANG Jie, CHENG Lin, MA Chun-hui

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (11) : 121-127.

PDF(1524 KB)
PDF(1524 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (11) : 121-127. DOI: 10.11988/ckyyb.20190825
ROCK-SOIL ENGINEERING

Inversion Analysis on Permeability Coefficient of Stratum in Engineering Area Based on RVM-CS

  • LI Ya-qi1,2, YANG Jie1,2, CHENG Lin1,2, MA Chun-hui1,2
Author information +
History +

Abstract

An inversion analysis model integrating relevance vector machine (RVM) and cuckoo search (CS) is established to accurately determine the permeability coefficients of strata in engineering area. Firstly, the uniform design method is employed to construct combinations of permeability coefficients, and the finite element method is used to calculate the water head values and generate RVM learning samples. In subsequence, the mapping relation between permeability coefficient and water head is constructed by RVM training which replaces the finite element method in calculating seepage. According to the measured water head values of drilling holes in the project area, the CS algorithm is adopted to search and determine the permeability coefficient of stratum. The seepage inversion model is applied to the inversion of initial seepage field of a large pumped storage power station project. Results demonstrate that the proposed model reflects the nonlinear relation between water head in borehole and permeability coefficient of multiple strata. RVM could replace the finite element method to determine quickly and accurately the permeability coefficient. The inversion results for the large pumped storage power station are reasonable and the accuracy of the proposed model meets engineering requirements.

Key words

permeability coefficient / inversion analysis / relevance vector machine / cuckoo search / uniform design method

Cite this article

Download Citations
LI Ya-qi, YANG Jie, CHENG Lin, MA Chun-hui. Inversion Analysis on Permeability Coefficient of Stratum in Engineering Area Based on RVM-CS[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(11): 121-127 https://doi.org/10.11988/ckyyb.20190825

References

[1] 陈益峰,周创兵,李典庆,等.大型水电工程渗流分析的若干关键问题研究[J].岩土工程学报,2010,28(9): 1448-1454.
[2] 王洪波,张庆松,刘人太,等.渗透系数反演的CHNN模型方法[J].raybet体育在线 院报,2001,18(3):25-28.
[3] 郭海庆,吴中如,张乾飞.基于压水试验的地层渗流场反分析[J].岩土力学,2018,39(3):985-992.
[4] 刘先珊,周创兵,张立君.基于模拟退火的Gauss-Newton算法的神经网络在渗流反分析中的应用[J].岩土力学,2005,26(3):404-408,414.
[5] 何 翔,李守巨,刘迎曦,等.基于遗传神经网络的坝基岩体渗透系数识别[J].岩石力学与工程学报,2004,23(5):751-751.
[6] 李 萍.改进的Hopfield神经网络在配送车辆调度中的应用研究[D].阜新:辽宁工程技术大学,2008.
[7] 王复明,苗 丽,郭雪莽.基于流固耦合的大坝渗流特性反演方法研究[J].水力发电学报,2008(2):60-64.
[8] 陈海洋,滕彦国,王金生.基于GA-SVR的渗透系数参数反演方法[J].水文地质工程地质,2011,38(2):14-18.
[9] 倪沙沙,迟世春.基于粒子群支持向量机的高心墙堆石坝渗透系数反演[J].岩土工程学报,2017,39(4):727-734.
[10]杨 杰,马春辉,向 衍,等.基于相关向量机与随机有限元的筑坝材料参数不确定性反分析[J].中国科学:技术科学,2018,48(10):87-95.
[11]TIPPING M E. Sparse Bayesian Learning and the Relevance Vector Machine[J]. Journal of Machine Learning Research, 2001, 1: 211-244.
[12]MACKAY D J C. Mackay Bayesian Interpolation[J]. Neural Computation, 1992, 4(3): 415-447.
[13]郑志成,徐卫亚,徐 飞,等.基于混合核函数PSO-LSSVM的边坡变形预测[J].岩土力学,2012,33(5):1421-1426.
[14]YANG X S,DEB S.Cuckoo Search Via Levy Flight[C]//Proceedings of World Congress on Nature and Biologically Inspired Computing.USA:IEEE Publications,2009:210-214.
[15]YANG X S, DEB S. Engineering Optimisation by Cuckoo Search[J]. International Journal of Mathematical Modeling and Numerical Optimisation, 2010, 1(4): 330-343.
[16]兰少峰,刘 升.布谷鸟搜索算法研究综述[J].计算机工程与设计,2015(4):1063-1067.
[17]周 斌,刘斯宏,姜忠见,等.洪屏抽水蓄能电站渗控效果数值模拟与评价[J].水力发电学报,2015,34(5):131-139.
[18]张 巍, 肖 明.地下工程渗流断层数值模拟的隐式复合材料单元法研究[J].岩土工程学报,2005,27(10):1203-1206.
[19]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994:69-97.
[20]梅松华,盛 谦,冯夏庭.均匀设计在岩土工程中的应用[J].岩石力学与工程学报,2004,23(16):2694-2694.
[21]XU Z G, LIU Y, HUANG J, et al. Performance Assessment of the Complex Seepage-Control System at the Lu Dila Hydropower Station in China[J]. International Journal of Geomechanics, 2019, 19(3): 05019001.
[22]孙超伟,柴军瑞,许增光,等.金川水电站地下厂房裂隙围岩渗控效应数值模拟与评价[J].岩土工程学报,2016,38(5):786-797.
[23]蒋海云,徐剑飞,刘斯宏,等.句容抽水蓄能电站渗控效果数值模拟与评价[J].三峡大学学报(自然科学版),2016,38(4):17-22.
[24]许增光,曹 成,李康宏,等.某抽水蓄能电站上水库局部防渗渗控分析[J].应用力学学报,2018,35(2):417-422.
PDF(1524 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map