Microstructure of Saline Soil Solidified with Alkali-activated Geopolymer

LU Qing-feng, WANG Zi-shuai, HE Jun-feng, WANG Sheng-xin, ZHOU Gang

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (1) : 79-83.

PDF(1599 KB)
PDF(1599 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (1) : 79-83. DOI: 10.11988/ckyyb.20180792
ROCKSOIL ENGINEERING

Microstructure of Saline Soil Solidified with Alkali-activated Geopolymer

  • LU Qing-feng1, WANG Zi-shuai1, HE Jun-feng1, WANG Sheng-xin2, ZHOU Gang1
Author information +
History +

Abstract

The fundamental mechanism by which alkali-excited geopolymer gelling material can effectively cure the sulfated soil lies in the improvement of the microstructure of the solidified soil. By comparing the unconfined compressive strength and microstructure of saline soil specimens solidified by water glass, lime-fly ash and water glass-lime fly ash, we examined the microstructure of saline soil solidified by water-glass alkali-activated fly ash geopolymer. Test results evinced that lime and fly ash together improved the particle gradation of saline soil, cut the pore size range, reduced the pore volume, and thus enhanced the compressive strength; water glass cemented the soil particles into agglomerates, reduced porosity and pore volume, and its compressive strength was markedly affected by concentration. The pore characteristics of saline soil solidified by water glass-lime fly ash were not optimal; but the compressive strength was the highest because hydration gel material formed by alkali-excited geopolymer filled the intergranular pores and improved the particle cementation condition. The solidification effect of alkali-excited geopolymer is affected by the degree of alkali-induced reaction. The higher the degree of reaction, the better the curing effect.

Key words

solidified saline soil / microstructure / geopolymer / water glass / lime and fly ash / mercury injection

Cite this article

Download Citations
LU Qing-feng, WANG Zi-shuai, HE Jun-feng, WANG Sheng-xin, ZHOU Gang. Microstructure of Saline Soil Solidified with Alkali-activated Geopolymer[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(1): 79-83 https://doi.org/10.11988/ckyyb.20180792

References

[1] 张晓智.盐渍土和盐渍土地区公路勘测设计方法研究[J].四川水泥,2017(11):93.
[2] YIN Jian-hua, GRAHAM J. Viscous-elastic-plastic Modelling of One-dimensional Time-dependent Behaviour of Clays[J]. Canadian Geotechnical Journal, 1989, 26(2): 199-209.
[3] KANIRAJ S R, HAVANAGI V G. Behavior of Cement-stabilized Fiber-reinforced Fly Ash-Soil Mixtures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(7): 574-584.
[4] 覃银辉,何 玮,柴寿喜,等.滨海盐渍土固化后物理力学性能试验研究[J].西安建筑科技大学学报(自然科学版),2007,39(3): 408-413.
[5] 柴寿喜,王晓燕,魏 丽,等. 五种固化滨海盐渍土强度与工程适用性评价[J].辽宁工程技术大学学报(自然科学版), 2009, 28(1): 59-62.
[6] PURDON A O. The Action of Alkalis on Blast-Furnace Slag[J]. Society of Chemical Industry, 1940, 59: 191-202.
[7] 吕擎峰,申 贝,王生新,等.水玻璃固化硫酸盐渍土强度特性及固化机制研究[J].岩土力学,2016,37(3):687- 693,727.
[8] 吕擎峰,贾梦雪,王生新,等.含盐量对固化硫酸盐渍土抗压强度的影响[J].中南大学学报(自然科学版),2018,49(3):718-724.
[9] 吴朱敏,吕擎峰,王生新.复合改性水玻璃加固黄土微观特征研究[J].岩土力学,2016,37(增刊2):301-308.
[10]林天干,何 华,许东风,等.地聚合物加固软土力学性能及微观试验研究[J].raybet体育在线 院报,2018,35(10):104-108.
[11]王 清,王剑平.土孔隙的分形几何研究[J].岩土工程学报,2000, 22(4):496-498.
[12]GB/T 50123—1999,土工试验方法标准[S].北京:中国建筑工业出版社,1999.
[13]张先伟,孔令伟,郭爱国,等.基于SEM和MIP试验结构性黏土压缩过程中微观孔隙的变化规律[J].岩石力学与工程学报,2012,31(2):406-412
[14]熊承仁,唐辉明,刘宝琛,等.利用SEM照片获取土的孔隙结构参数[J].地球科学(中国地质大学学报),2007, 32(3): 415-419.
[15]杨晓松,刘井强,党进谦.粉煤灰改良氯盐渍土工程特性试验研究[J].raybet体育在线 院报,2012,29(11):82-86.
[16]杨西锋,尤哲敏,牛富俊,等.固化剂对盐渍土物理力学性质的固化效果研究进展[J].冰川冻土,2014,36(2):376-385.
[17]李书进,厉见芬.碱激发大掺量粉煤灰胶凝材料的试验研究[J].粉煤灰,2010,22(6):10-11,14.
PDF(1599 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map