Characteristics of Turbulent Velocity in Open Channel Based on Chaos Theory

XIA Wei, CHEN He-chun, WANG Ji-bao, LIU Chao-fan, CHEN Yan-chao, CHEN Shi-tong

Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (12) : 65-70.

PDF(2102 KB)
PDF(2102 KB)
Journal of Changjiang River Scientific Research Institute ›› 2019, Vol. 36 ›› Issue (12) : 65-70. DOI: 10.11988/ckyyb.20180389
HYDRAULICS

Characteristics of Turbulent Velocity in Open Channel Based on Chaos Theory

  • XIA Wei, CHEN He-chun, WANG Ji-bao, LIU Chao-fan, CHEN Yan-chao, CHEN Shi-tong
Author information +
History +

Abstract

Open channel flume experiment was performed in an attempt to reveal the chaotic characteristics of turbulent flow. The turbulent flow velocity field attenuating along the flow direction was measured using Acoustic Doppler Velocimetry (ADV). In the light of the chaos theory, phase space reconstruction of the turbulent velocity time series was performed to calculate the corresponding chaotic characteristic parameters (including time delay, correlation dimension, Lyapunov exponent, and Kolmogrov entropy). Results demonstrated that the turbulence in open channel is of chaotic characteristics. After installing the turbulence control board, the chaotic characteristics of turbulence are continuously weakened along the upward direction of water depth and the water flow direction. The aforementioned chaotic characteristic parameters were further compared with the statistical average parameters, and results proved that the chaotic characteristic parameters reflect the law of the dissipation and perish of turbulent vortex structures in space.

Key words

turbulent flow in open channel / chaos theory / phase space reconstruction / time delay / correlation dimension / Lyapunov exponent / Kolmogrov entropy

Cite this article

Download Citations
XIA Wei, CHEN He-chun, WANG Ji-bao, LIU Chao-fan, CHEN Yan-chao, CHEN Shi-tong. Characteristics of Turbulent Velocity in Open Channel Based on Chaos Theory[J]. Journal of Changjiang River Scientific Research Institute. 2019, 36(12): 65-70 https://doi.org/10.11988/ckyyb.20180389

References

[1]卢 侃,孙建华.混沌学传奇[M] .上海:上海翻译出版公司,1991.
[2] LORENZ E N. Deterministic Nonperiodic Flow[J] . Journal of Atmospheric Sciences, 1963,20(2):130-141.
[3] HÉNON M, HEILES C. The Applicability of the Third Integral of Motion: Some Numerical Experiments[J] . Astronomical Journal, 1964,69:73.
[4] RUELLE D, TAKENS F. On the Nature of Turbulence[J] . Communication in Mathematical Physics, 1971,23(4):343-344.
[5] LI T Y, YORKE J A. Period Three Implies Chaos[J] . The American Mathematical Monthly, 1975, 82(10): 985-992.
[6] TAKENS F. Detecting Strange Attractors in Turbulence[M] ∥Lecture Notes in Mathematics, Berlin, Heidelberg:Springer-Verlag, 1981:366-381.
[7] BORODULIN V I, KACHANOV Y S. Cascade of Harmonic and Parametric Resonances in K-regime of Boundary-layer Breakdown[J] . Modelirovanie v Mekhanike (Simulation in Mechanics), 1989,3(20):38-45.
[8] HULTGREN L S. Nonlinear Spatial Equilibration of an Externally Excited Instability Wave in a Free Shear Layer[J] . Journal of Fluid Mechanics, 1992,236:635-664.
[9] 汤一波,金忠青.脉动压力的紊流分形特征[J] .水科学进展,1998,9(4):361-366.
[10] 李睿劬,李存标.平板边界层中湍流的发生与混沌动力学之间的联系[J] .物理学报,2002,51(8):1743-1749.
[11] 沈学会,陈举华.分形与混沌理论在湍流研究中的应用[J] .河南科技大学学报(自然科学版),2005,26(1):27-30.
[12] 傅 强,钟纪华,张朝曦.Rayleigh-Benard对流温度信号的混沌特性分析[J] .解放军理工大学学报(自然科学版),2011,12(5):536-540.
[13] 姚天亮,刘海峰,许建良,等.空气湍射流速度时间序列的最大Lyapunov指数以及湍流脉动[J] .物理学报, 2012,61(23):342-348.
[14] 张建伟,董 鑫,马红越,等.双喷嘴水平对置撞击流混合器内湍流流动及混沌特性[J] .化工进展,2015,34(7):1832-1840.
[15] 佘振苏,程雪玲.湍流的复杂系统论[C] ∥庄逢甘,郑哲敏.钱学森技术科学思想与力学.北京:国防工业出版社,2001:161-169.
[16] 佘振苏,苏卫东.湍流中的层次结构和标度律[J] .力学进展,1999,29(3):289-303.
[17] 王东生,曹 磊.混沌、分形及其应用[M] .合肥:中国科学技术大学出版社,1995.
[18] 朱赵辉,郑东健,张晓华.混沌-数据挖掘模型在大坝安全预测中的应用[J] .raybet体育在线 院报,2007,24(5):34-37.
[19] 门宝辉,赵燮京,梁 川.长江上游川中地区降水时间序列的混沌分析[J] .raybet体育在线 院报,2004,21(1):43-46.
[20] GRASSBERGER P, PROCACCIA I. Characterization of Strange Attractors[J] . Physical Review Letters, 1983,50(5):346.
[21] 韩 敏.混沌时间序列预测理论与方法[M] .北京:中国水利水电出版社,2007.
[22] 修春波,刘向东,张宇河.相空间重构延迟时间与嵌入维数的选择[J] .北京理工大学学报,2003,23(2):219-224.
[23] 吕金虎, 陆君安,陈士华. 混沌时间序列分析及其应用[M] .武汉:武汉大学出版社, 2002.
[24] WOLF A, SWIFT J B, SWINNEY H L, et al. Determining Lyapunov Exponents from a Time Series[J] . Physica D: Nonlinear Phenomena,1985, 16(3): 285-317.
[25] ABARBANEL H D I. Analysis of Observed Chaotic Data[J] . Technometrics, 1996,39(3): 334-335.
[26] 钟 强,李丹勋,陈启刚,等.明渠湍流中的主要相干结构模式[J] .清华大学学报(自然科学版), 2012,52(6):730-737.
[27] 张 鹏,杨胜发,胡 江,等.明渠湍流涡运动尺度分布特性[J] .水科学进展,2015,26(1):91-98.
PDF(2102 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map