Spatio-temporal Differentiation of Ecological Environment Vulnerability in Karst Trough Region Based on Grid Scale

XIE Ren-dong, ZHAO Cui-wei

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (4) : 48-53.

PDF(1797 KB)
PDF(1797 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (4) : 48-53. DOI: 10.11988/ckyyb.20171227
WATER-SOIL CONSERVATION AND ECOCONSTRUCTION

Spatio-temporal Differentiation of Ecological Environment Vulnerability in Karst Trough Region Based on Grid Scale

  • XIE Ren-dong1,2, ZHAO Cui-wei1,2
Author information +
History +

Abstract

According to the raster data of natural environment and socio-economy of Yinjiang County, a typical karst trough region in Guizhou Province, we established the spatial database of eco-environmental vulnerability indexes with grid size of 30 m × 30 m based on remote sensing (RS) and geography information system (GIS). The index system includes aspects of sensitivity, elasticity, and pressure. Moreover, the levels of ecological vulnerability are classified by using comprehensive index method and analytic hierarchy process (AHP). Results show that potentially and slightly vulnerable areas accounted for a large proportion of the study area, taking up 86.60% and 87.37% in 2010 and 2015 respectively; whereas heavily and extremely vulnerable areas accounted for a small proportion of the study area. Areas of high vulnerability mostly distributed in regions of large population density, low vegetation coverage, large topographic relief and high intensity of human activity. The research results would offer theoretical reference for the ecological restoration and reconstruction and the environmental protection of the study area, and the assessment model in the present research is applicable to the assessment of eco-environment vulnerability at provincial and municipal levels.

Key words

Karst trough region / ecological environment / vulnerability assessment / grid scale / index method / AHP

Cite this article

Download Citations
XIE Ren-dong, ZHAO Cui-wei. Spatio-temporal Differentiation of Ecological Environment Vulnerability in Karst Trough Region Based on Grid Scale[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(4): 48-53 https://doi.org/10.11988/ckyyb.20171227

References

[1]DANIEL D E, THAMS J. Water in Desert Ecosystems[M]. U.S.A.: Academic Press, 1981.
[2] KOVSHAR A F, ZATOKA A L. Placing and Infrastructure of Reservations in the Arid Zone of the USSR[J]. Probiemy Osvoeniya Pustyn, 1991,(3/4): 155-161.
[3] 牛文元. 生态环境脆弱带ECOTONE的基础判定[J]. 生态学报, 1989, 9(2):97-105.
[4] 杨勤业.生态环境综合整治与恢复技术研究(第一集)[M].北京:北京科学技术出版社,1992.
[5] 蔡海生, 陈美球, 赵小敏. 脆弱生态环境脆弱度评价研究进展[J]. 江西农业大学学报, 2003, 25(2):270-275.
[6] 刘正佳, 于兴修, 李 蕾,等. 基于SRP概念模型的沂蒙山区生态环境脆弱性评价[J]. 应用生态学报, 2011, 22(8):2084-2090.
[7] ZANG Z, ZOU X, ZUO P, et al. Impact of Landscape Patterns on Ecological Vulnerability and Ecosystem Service Values: An Empirical Analysis of Yancheng Nature Reserve in China[J]. Ecological Indicators, 2017, 72:142-152.
[8] O’BRIEN K, LEICHENKO R, KELKAR U, et al. Mapping Vulnerability to Multiple Stressors: Climate Change and Globalization in India[J]. Global Environmental Change, 2004, 14(4):303-313.
[9] 王瑞燕, 赵庚星, 周 伟,等. 土地利用对生态环境脆弱性的影响评价[J]. 农业工程学报, 2008, 24(12):215-220.
[10]姚 昆, 吴 亮, 相恒星,等. 凉山地区生态环境脆弱性的时空动态变化[J]. 水土保持通报, 2017, 37(1):329-334.
[11]李永化, 范 强, 王 雪,等. 基于SRP模型的自然灾害多发区生态脆弱性时空分异研究——以辽宁省朝阳县为例[J]. 地理科学, 2015, 35(11):1452-1459.
[12]王瑞燕, 赵庚星, 周 伟,等. 县域生态环境脆弱性评价及其动态分析——以黄河三角洲垦利县为例[J]. 生态学报, 2009, 29(7):3790-3799.
[13]苏维词, 朱文孝. 贵州喀斯特山区生态环境脆弱性分析[J]. 山地学报, 2000, 18(5):429-434.
[14]李阳兵, 黄 娟, 徐 倩,等. 对石漠化概念及其治理的再思考[J]. 贵州师范大学学报(自然科学版), 2017, 35(5):1-6.
[15]陈金月, 王石英. 岷江上游生态环境脆弱性评价[J]. 长江流域资源与环境, 2017, 26(3):471-479.
[16]吴 翠, 牛瑞卿, 孙 平. 三峡库区巫山—奉节段生态环境敏感性分析[J]. raybet体育在线 院报, 2017, 34(9):29-35.
[17]马一丁, 付 晓, 田 野,等. 锡林郭勒盟煤电基地开发生态脆弱性评价[J]. 生态学报, 2017, 37(13):4505-4510.
[18]韦 晶, 郭亚敏, 孙 林,等. 三江源地区生态环境脆弱性评价[J]. 生态学杂志, 2015, 34(7):1968-1975.
[19]王雪梅, 席 瑞. 基于GIS的渭干河流域生态环境脆弱性评价[J]. 生态科学, 2016, 35(4):166-172.
PDF(1797 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map