Indoor Experimental Study on Flocculation Settling of Dredged Sediment

TANG De-yi, WENG Hao-xuan, SHI Yan-nan

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (4) : 31-36.

PDF(2350 KB)
PDF(2350 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (4) : 31-36. DOI: 10.11988/ckyyb.20170771
WATER RESOURCES AND ENVIRONMENT

Indoor Experimental Study on Flocculation Settling of Dredged Sediment

  • TANG De-yi1,2, WENG Hao-xuan1,2, SHI Yan-nan1,2
Author information +
History +

Abstract

The efficiency of mud flocculation settling is an important factor affecting the dredging progress in lakes or reservoirs. To explore the effect of different flocculants (organic and inorganic) on the settling efficiency of dredged mud, we compared the flocculation settling efficiency and supernate quality of dredged mud treated by organic flocculant (PAM) and five inorganic flocculants(PAC,FeCl3,Na2CO3,Na2SiO3·9H2O, and KAl(SO4)2·12H2O), respectively. Furthermore we conducted optimization test on the combination of flocculants to achieve an optimum settling efficiency and supernate water quality. Through the indoor tests we conclude that PAM could effectively promote the flocculation settling of dredged mud soil particles, but the efficiency of reducing turbidity is low; CO32- could also improve the efficiency of flocculation settling by gathering fine particles into large particles; Fe3+ and Al3+could reduce the turbidity of supernate, but has limited effect in enhancing flocculation settling. The optimum combination of flocculants is 10 ml PAM+2gPAC+2gNa2CO3 in every 1 000 ml dredged mud, which could both accelerate the settling of dredged mud and reduce the turbidity of supernate effectively.

Key words

dredged sediment / chemical flocculant / flocculation-settling / supernate / moisture content / turbidity-reducing rate

Cite this article

Download Citations
TANG De-yi, WENG Hao-xuan, SHI Yan-nan. Indoor Experimental Study on Flocculation Settling of Dredged Sediment[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(4): 31-36 https://doi.org/10.11988/ckyyb.20170771

References

[1] 李晓威,吕 鹏,彭万里.湖泊环保疏浚工程中泥浆絮凝效率的优化研究[J].人民黄河,2016,38(9):64-67.
[2] 钟继承,范成新.底泥疏浚效果及环境效应研究进展[J].湖泊科学,2007,19(1):1-10.
[3] 颜昌宙,范成新,杨建华,等.湖泊底泥环保疏浚技术研究展望[J].环境污染与防治,2004,26(3):189-192.
[4] 王广召,方 涛,唐 巍,等.疏浚对巢湖重污染入湖河流沉积物中污染物赋存及释放的影响[J].湖泊科学, 2014, 26(6):837-843.
[5] 林 莉,李青云,吴 敏.河湖疏浚底泥无害化处理和资源化利用研究进展[J].raybet体育在线 院报,2014,31(10):80-88.
[6] 唐云飞,王荣昌,马利民,等. 河道疏浚底泥余水强化絮凝处理工艺优化与机理[J]. 净水技术, 2012, 31(3):93-97.
[7] 吕 斌,杨 开,洪汉清,等.东湖底泥的脱水性能试验研究[J].中国给水排水,2003,19(5):56-58.
[8] 曾德芳,袁继祖.一种新型环保型污泥脱水絮凝剂的研制与应用[J].工业水处理,2007,27(1):17-20.
[9] 范杨臻,杨国录,刘林双. AlCl3、FeCl3和有机物颗粒对淤泥絮凝沉降特性影响[J]. 节水灌溉, 2011,(8):12-16.
[10]梁启斌,倪 杰,林 潇. 滇池疏浚底泥脱水试验研究[J]. 安徽农业科学, 2011, 39(3):1698-1700.
[11]TARCHITZKY J, CHEN Y, BANIN A. Humic Substance and pH Effects on Sodium-and Calcium-montmorillonite Flocculation and Dispersion[J]. Soil Science Society of America Journal, 1993, 57(2): 367-372.
[12]陈洪松,邵明安. 有机质、CaCl2和MgCl2对细颗粒泥沙絮凝沉降的影响[J]. 中国环境科学, 2001, 21(5):395-398.
[13]赵彬侠,白伟利,梁 婉,等.聚硅酸锌铝的制备及其性能研究[J]. 环境工程学报, 2009, 3(12):2237-2240.
[14]李 冲,吕志刚,陈洪龄,等. 河湖疏浚淤泥的表征、絮凝和脱水[J]. 环境工程学报, 2013, 7(2):737-742.
[15]张晴波. 环保疏浚及其控制研究[D]. 南京: 河海大学, 2007.
[16]陈雄峰. 太湖环保疏浚底泥干化技术研究[D]. 北京: 北京工业大学, 2006.
[17]郑盈盈. 还浦江百姓一库清水——国内首个中型水库深水生态清淤工程开工[N]. 中国水利报, 2015-10-23(1).
[18]唐建中.绞吸式挖泥船疏浚作业优化与控制研究[D]. 杭州: 浙江大学, 2007.
[19]史燕南, 俞炯奇, 周剑锋,等. 吹填淤泥固化室内试验研究[J]. 水运工程, 2014, 5(5):138-142.
[20]何品晶, 卞成林,顾国维,等. 受污染河道疏浚泥浆离心脱水上清液净化工艺[J]. 同济大学学报(自然科学版), 2002, 30(7):881-885.
PDF(2350 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map