Current In-situ Stress State and Stability of Active Fault Zone in Piedmont of Altai Mountains

ZHOU Chun-hua, LI Yun-an, YIN Jian-min, WANG Yang, AI Kai, TANG Qian

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (3) : 79-84.

PDF(10262 KB)
PDF(10262 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (3) : 79-84. DOI: 10.11988/ckyyb.20171080
TESTS AND MONITORING IN GEOTECHNICAL ENGINEERING

Current In-situ Stress State and Stability of Active Fault Zone in Piedmont of Altai Mountains

  • ZHOU Chun-hua1,2, LI Yun-an1, YIN Jian-min2, WANG Yang2, AI Kai2, TANG Qian1,3
Author information +
History +

Abstract

There is an active tectonic zone in large scale in Altai region of the Asian continent, and historical earthquake data shows that the Altai Mountain is also active in seismicity. Analyzing the current stress state is of greatsignificance to the assessment of earthquake activity risk. In this research, the distribution law of current in-situstress state in the active fault zone is revealed by hydraulic fracturing measurement at two boreholes (nearly 700 m in depth) in the piedmont of Altai Mountains. Results show that in buried depth of about 320 m, the spatial principal stress state changes from thrust type to strike-slip type, indicating a stress partition near the active faults; the orientation of maximum horizontal principal stress of the two boreholes is mostly in NW, which, together with the focal mechanism, verifies the right-lateral strike-slip characteristics of NWW active faults. Finally, according to the measured stress data, mechanical analysis on the stability of the active faults is carried out based on Coulomb faulting criterion and the law of Byerlee. Results conclude that up until now, the active faults in the piedmont of the Altai Mountains are relatively stable, with no mechanical condition brewing instability. The research results offer basic geomechanics data for studies on the regional active faults’ current activity, and provide scientific reference for selecting the location of engineering project near the active faults.

Key words

Altai Mountains / active fault / in-situ stress / the law of Byerlee / stability

Cite this article

Download Citations
ZHOU Chun-hua, LI Yun-an, YIN Jian-min, WANG Yang, AI Kai, TANG Qian. Current In-situ Stress State and Stability of Active Fault Zone in Piedmont of Altai Mountains[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(3): 79-84 https://doi.org/10.11988/ckyyb.20171080

References

[1] 柏美祥.新疆构造地貌的若干特点[J]. 新疆地理,1983,(2): 19-24.
[2] 沈 军,李莹甄,汪一鹏,等.阿尔泰山活动断裂[J]. 地学前缘, 2003, 10(增1): 133-143.
[3] 邓起东,张培震,冉勇康.等.中国活动构造基本特征[J].中国科学D辑,2002,32(12):1020-1032.
[4] 黄福明.地壳应力测量及其在工程中的应用(综述)[J].地震,1990,(3):69-80.
[5] 刘允芳,肖本职.西部地区地震活动与地应力研究[J].岩石力学与工程学报,2005,24(24):4502-4508.
[6] BYERLEE J. Friction of Rocks[J]. Pure and Applied Geophysics, 1978, 116(4/5): 615-626.
[7] RALEIGH C B, HEALY J H, BREDEHOEFT J D. An Experiment in Earthquake Control at Rangely, Colorado[J].Science, 1976, 191: 1230-1237.
[8] ZOBACK M D, HICKMAN S. In-situ Study of the Physical Mechanisms Controlling Induced Seismicity at Monticello Reservoir, South Caroling[J]. Journal of Geophysical Research, 1982, 87(B8): 6959-6974.
[9] 张伯崇.孔隙压力、断层滑动准则和水库蓄水的影响[C]∥长江三峡坝区地壳应力与孔隙水压力综合研究.北京: 地震出版社, 1996.
[10]郭啟良,王成虎,马洪生,等. 汶川Ms 8.0 级大震前后的水压致裂原地应力测量[J]. 地球物理学报, 2009,52(5): 1395-1401.
[11]陈群策,安其美,孙东生,等.山西盆地现今地应力状态与地震危险性分析[J].地球学报,2010,31(4):541-548.
[12]田中豊,小泉誠,加藤正明.地震活動に関係した地殻変動(5A)-近畿地方北西部の地震活動と生野で観測された地殻変動[J]. 京都大学防災研究所年報, 1970, 13(A): 91-108.
[13]李永松,尹健民,陈建平,等.基于模拟退火和粒子群混合算法的地应力场分析[J].人民长江,2011,42(23):65-67,97.
[14]沈 军,汪一鹏,李 锰.阿尔泰山西段活动断裂的初步研究[Z]. 活动断裂研究编委会.活动断裂研究6.北京:地震出版社,1998:109-120.
[15]BULJINNYAM I,BAYASGALAN A,BORISOV B A,et al. Ruptures of Major Earthquakes and Active Deformation in Mongolia and Its Surroundings[J]. Geological Society of America, doi: 10.1130/MEM181-p1.
[16]柏美祥,罗富忠,尹光华,等.新疆富蕴断裂带[J].内陆地震,1996,10(4):19-29.
[17]邓起东.中国活动构造研究[J].地质论评,1996,42(4):295-299.
[18]邓起东.中国活动构造研究的进展与展望[J].地质论评,2002,48(2):168-177.
[19]柏美祥.新疆活断层和强震[J].地震学报,1986,8(1):79-82.
[20]谢富仁,崔效锋,赵建涛,等.中国大陆及邻区现代构造应力场分区[J].地球物理学报, 2004,47(4):654-662.
[21]HAMISON B C. The Hydraulic Fracturing Method of Stress Measurement: Theory and Practice[J]. Comprehensive Rock Engineering, 1995, 3(3): 395-412.
[22]GB/T 50266—2013,工程岩体试验方法标准[S].北京:中国计划出版社,2013.
[23]刘允芳. 岩体地应力与工程建设[M]. 武汉:湖北科学技术出版社,2000.
[24]KIM K,FRANKLIN J A.Suggested Methods for Rock Stress Determination[J]. International Journal of Rock Mechanics and Mining Sciences, 1987, 24:53-73.
[25]杨树新,姚 瑞,崔效锋,等.中国大陆与各活动地块、南北地震带实测应力特征分析[J].地球物理学报,2012,55(12):4207-4217.
[26]ZOBACK M D, BARTON C A, BRUDY M, et al. Determination of Stress Orientation and Magnitude in Deep Wells[J]. International Journal of Rock Mechanics and Mining Sciences, 2003,40(7):1049-1076.
[27]安其美,丁立丰,王海忠,等.龙门山断裂带的性质与活动性研究[J].大地测量与地球动力学,2004,24(2): 115-119.
[28]李 宏,谢富仁,王海忠,等.乌鲁木齐市断层附近地应力特征与断层活动性[J].地球物理学报,2012,55(11):3690-3698.
[29]黄禄渊,杨树新,崔效锋,等. 华北地区实测应力特征与断层稳定性分析[J].岩土力学,2013,34(增1):204-213.
[30]丰成君,张 鹏,孙炜锋,等.北京昌平十三陵钻孔地应力测量与实时监测在断层活动危险性分析中的应用探讨[J]. 地球学报,2014,35(3):345-354.
[31]王成虎,宋成科,郭启良,等.利用原地应力实测资料分析芦山地震震前浅部地壳应力积累[J].地球物理学报,2014,57(1):102-114.
PDF(10262 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map